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ABSTRACT 

Agroecosystems may differ in multiple ecosystem properties, among them nitrous oxide (N2O) 

production and soil microbial community composition. We hypothesized that perenniality, plant species 

richness, and exogenous nitrogen inputs all influence N2O production directly through regulation of 

substrate concentrations and other environmental conditions and indirectly through changes to soil 

microbial functional characteristics. We studied the interplay among cropping systems, microbial 

communities, and N2O production in the context of an agronomic trial of potential bioenergy feedstock 

cropping systems.  

We measured N2O production from 2009-2014 and collected accompanying data on soil 

temperature, water-filled pore space, and inorganic nitrogen concentrations. Individual N2O fluxes and 

aggregate annual N2O emissions were lower in perennial systems relative to annual ones, but were not 

consistently influenced by plant species richness in perennial systems. Environmental variables defined 

upper limits for N2O fluxes, but did little to explain cropping system effects or their lack.  

We explored microbial community differences between continuous corn and prairie systems 

using membrane lipid profiling, amplicon sequencing, and functional gene annotations from shotgun 

metagenomic sequencing. The strength of cropping system effects differed among methods, with the 

strongest effects observed in lipid profiles. We used elastic net modeling to correlate community profiles 

to aggregate N2O emissions. Only the corn system could be effectively modeled, with the best models 

created from 16S rRNA amplicons and functional gene abundances. 

We used bacterial functional gene abundance profiles to characterize microbial communities 

across a broader range of cropping systems. The strength of cropping system effects varied among site 

years. Ecological factors such as perenniality and species diversity did not determine abundance patterns 

for either the full set of genes explored or for groups of genes with similar functions. Similarly, individual 

denitrification pathway genes did not systematically differ among cropping systems.  
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Cropping system effects on N2O production and functional gene abundances were weaker than 

anticipated. Despite this, elastic net modeling linked gene abundance patterns to variation in N2O 

emissions with considerable accuracy. This indicates that within-cropping system variability in N2O 

production and functional genes are in some way connected. 
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PROLOGUE 

Project background and rationale 

This dissertation presents an attempt to link the inherent nitrous oxide (N2O) production capacities of 

bioenergy feedstock cropping systems to the functional genetic composition of their soil microbial 

communities. This project formed part of the US Department of Energy-funded Great Lakes Bioenergy 

Research Center (GLBRC) portfolio of sustainability research. GLBRC is one of three Bioenergy 

Research Centers funded through the surge of public investment in energy research that resulted from the 

oil crisis in the mid-2000s (Slater et al., 2010). The GLBRC research portfolio emphasized the ecological 

impacts of bioenergy feedstock production from the outset, considering both risks to be avoided and 

potential for beneficial ecological changes (Robertson et al., 2008). The Jackson Grassland Ecology Lab’s 

expertise with studying biogeochemical cycling in agroecosystems (Bleier and Jackson, 2007; Craine and 

Jackson, 2010; Jackson et al., 2006) situated it naturally to take a leading role in the study of greenhouse 

gas emissions and nitrogen dynamics in potential bioenergy feedstock cropping systems (Duran et al., 

2016; Oates et al., 2016). As GLBRC research projects were being set up, I found myself in possession of 

a genetics-based hammer (Duncan et al., 2015) and a growing interest in microbe-shaped nails.  

 To paraphrase one frequently excited soil ecologist, microbiology has always been exiting, but 

the period in which I conducted this research was special. The ongoing development and increasing 

accessibility of culture-free microbial community characterization methods revealed extensive 

underestimates of microbial diversity, while also providing new and exciting tools to explore that 

diversity (Hirsch et al., 2010; Singh et al., 2009). Genetic methods led to major changes in the 

understanding of microbial taxa that involved in major biogeochemical transformations such as ammonia 

oxidation (Leininger et al., 2006) and nitrous oxide reduction (Sanford et al., 2012). At the same time, a 

growing body of evidence illustrated the critical importance of soil microbial activity and communities on 

ecosystem functioning, notably in biogeochemical cycling (van der Heijden et al., 2008). Despite this, the 

connection of microbial community composition and structure to ecosystem functionality remained 

difficult to demonstrate (Choudoir et al., 2012; Nannipieri et al., 2003) and as such provided a tempting 
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target for an ambitious ecologist. In particular, the microbial ecology of bioenergy feedstock cropping 

systems intersected with my research interests as well as those of the GLBRC and the Jackson Lab. 

 Soil microbial ecology formed an integral part of the GLBRC sustainability research portfolio 

from the outset. Early work characterized microbial communities in extant agricultural and established 

grassland systems (Jesus et al., 2016; Liang et al., 2012, 2016), and in short-rotation woody crop systems 

(Xue et al., 2016). In the realm of ecological theory, the relationship between microbial diversity and 

function were investigated (Levine et al., 2011; Werling et al., 2014). The Bioenergy Cropping Systems 

Experiments (BCSEs) at the University of Wisconsin-Madison Arlington Agricultural Research Station 

(ARL) and the Michigan State University W.K. Kellogg Biological Station (KBS) provided a platform 

where a broad array of cropping systems could be compared in an agronomic experimental framework 

(Sanford et al., 2016). Work on these systems emphasized community fingerprinting or  

Characterization of these systems’ microbial communities largely entailed taxonomic profiling or 

emphasis on particular functional genes (Herzberger et al., 2014; Jesus et al., 2016; Liang et al., 2016). 

Needing a niche, I focused my work on functional gene profiling.  

 While most ecology focuses on organisms or communities as the basic unit of inquiry, complex 

microbial communities lend themselves to a gene-centric approach (Tringe et al., 2005; Wilmes et al., 

2008). The concept of the gene as a meaningful unit for ecological selection reflects the potential 

disconnect between microbial taxonomy and function enabled by horizontal/lateral gene transfer (Chia 

and Goldenfeld, 2011; Lawrence, 2002). In many cases, communities of organisms performing a function 

can be defined and detected through indicator genes involved in that function, e.g. nitrate reductase 

(nirK/S) for denitrifiers (e.g. Yoshida et al., 2010) or nigrogenase (nifH) for diazotrophs (e.g. Wakelin et 

al., 2009). At its most direct, this approach examines the relative abundance of a functional gene within a 

population as a means of evaluating the ecological importance of that function (Petersen et al., 2012). 

Simultaneous abundance profiling of large numbers of genes was initially done through microarrays (He 

et al., 2010), a technology whose familiarity no doubt contributed to my enthusiasm for gene-centric 

science (Ma et al., 2007). While the confluence of increased availability of high-throughput sequencing 
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and profit-driven international business decisions ultimately resulted in my use of shotgun metagenomic 

sequencing rather than microarrays, functional gene abundance profiles remained the primary mechanism 

by which I characterized soil microbial communities in this project.  

 With the means of investigating microbial communities thus settled, I needed to specify which of 

their effects to study. My initial interests involved soil and/or agroecosystem “health” (Kibblewhite et al., 

2008). My readings at the time suggested that microbial communities could be highly sensitive integrators 

of complex functions and behaviors (Ritz et al., 2009; Winding et al., 2005). As the nigh-impossibility of 

operationally defining such concepts set in, I focused on the production of trace gasses with global 

warming potential, notably CO2, N2O, and CH4. Inability to isolate heterotrophic respiration ruled out 

CO2 as an informative response, while our estimates of CH4 fluxes were too noisy to instill much 

confidence, leaving what was fortunately the most interesting of the three. In many senses, N2O 

production in soil provides an ideal framework for studying the effects of microbial community 

composition on an ecologically relevant process. The details of this are presented extensively, and 

somewhat repetitively, throughout this dissertation, but briefly stated, N2O is produced by relatively 

simple biochemical pathways whose key genetic components are well-characterized and found broadly, if 

variably, throughout microbial populations (Philippot and Hallin, 2005). The gas itself is one of the chief 

mechanisms by which agricultural sectors in developed countries contribute to global warming (Hu et al., 

2015). Thus, this system provided a compelling ecological question, a sizeable body of knowledge to 

study it, and clear practical motivations for studying it. 

Structural overview 

My dissertation project was conducted on the BCSEs at ARL and KBS. This framework enabled me to 

largely isolate cropping system effects from the effects of climate and physical soil properties and 

provided a statistically robust experimental design. Nitrous oxide and other environmental data were 

collected from these experiments as one of the core data-generating activities of the GLBRC, creating a 

far more extensive dataset than I could have generated myself. The dissertation consists of five data and 

analysis chapters:  
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Chapter 1 compares the soil microbial communities of continuous corn and restored prairie at 

ARL using four characterization methods: membrane lipid profiling, 16S rRNA and nitrous oxide 

reductase (nosZ) amplicon sequencing, and shotgun sequencing. This study served multiple purposes. It 

allowed comparison of the shallow shotgun metagenomic sequencing approach employed in this 

dissertation to more established methods for community characterization. It gave me an opportunity to go 

through the process of generating and analyzing sequencing data using a dataset of tractable size. Finally, 

by comparing the two most ecologically dissimilar cropping systems in the BCSE, it was a test of the 

feasibility of my underlying approach. The method comparison and repeated annual measurements were 

relatively novel in the literature, resulting in this chapter’s publication. 

 Chapter 2 correlates the microbial community data from Chapter 1 to N2O emissions data 

generated in a prior publication (Oates et al., 2016). This is the chapter that almost wasn’t, as it was 

initially intended as a proof of concept exercise rather than a planned publication. However, posters and 

presentations of this exercise generated sufficient interest to motivate packaging it into what I hope to 

make a standalone publication. This chapter forced an early confrontation with the challenge of bringing 

potentially thousands of predictors from sequencing data to bear on the prediction of, at most, a few 

dozen flux observations.  

 Chapter 3 explores the microbial ecology of BCSE cropping systems, focusing on the extent to 

which systems shape characteristic functional gene profiles in their associated microbial communities. It 

was necessary to determine the extent to which microbial communities differed among and within 

cropping systems in order to evaluate whether they contained sufficient information to capture variance in 

an ecosystem property like N2O production potential.  

 Chapter 4 focuses on how environmental conditions constrain individual N2O flux events. The 

initial intent with this chapter was to focus on generating estimators of inherent N2O production, but 

several factors changed that. The most exciting estimation method required considerable structural 

overhead to describe, and ultimately did not work well at all. At the same time, initially minor analysis of 

ecological constraints proved unexpectedly compelling. In the end, it was cleaner to present fluxes and 
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their environmental constraints separately from estimators of N2O production and their prediction by 

microbial data. 

 Chapter 5 is an odd duck. It generates four estimators of inherent N2O production capacity, 

which it then models from functional gene profiles using the elastic net approach explored in Chapter 2. 

This chapter makes sense within the context of the dissertation, but would make for an unwieldy 

publication. This chapter contains elements that contribute to the stories in Chapters 3 and 4, as well as 

some analyses that failed to provide results worth publishing. Its tone and structure differ from those of 

the preceding chapter, with the aim of communicating the rather dense set of analyses and methods as 

clearly as possible.  

 A brief general conclusion outlines a proposed framework for publishing the contents of this 

dissertation. This primarily entails moving analyses from Chapter 5 to Chapters 3 and 4 to broaden the 

story. In this section, I also present some themes that occurred across the chapters, but were not 

necessarily their focus. 
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Abstract 

Perennial grass-based agroecosystems are under consideration as sustainable sources of bioenergy 

feedstocks. Establishing these systems on land previously used for conventional agricultural production is 

expected to dramatically alter the composition and functional capacity of their associated soil bacterial 

communities, but the rate at which these changes will occur is unclear. Methods for characterizing 

bacterial communities are both varied and useful for documenting different aspects of the soil microbiota 

and their dynamics during this transition. Here, we studied the soil-associated bacterial communities of 

continuous corn and restored prairies systems within a cropping systems experiment 2 to 4 years after 

establishment using 1) phospholipid fatty acid (PLFA) profiling, 2) shotgun metagenomic sequencing, 3) 

amplicon sequencing of the 16S rRNA gene and 4) sequencing of nitrous oxide reductase (nosZ). All 

characterization methods discriminated the bacterial communities between the two cropping systems, but 

the largest differences were observed with PLFA profiling. Differences between the two cropping systems 

did not significantly increase during the study period. The community compositions described by 

sequence-based methods were mutually correlated, but were only weakly correlated to the composition 

described by PLFA profiling. Shotgun metagenomics detected a much higher abundance of 

Actinobacteria than amplicon sequencing and revealed more consistent changes between cropping 

systems over time. Cropping system and interannual effects on the ratios of biomarkers associated with 

Gram-negative and Gram-positive bacteria were entirely different for PLFAs, rRNA amplicons, and 

shotgun-sequenced 16S rRNA. Because these characterization methods reflect different aspects of the 

bacterial community, none are clearly superior or optimal, but instead all provide insight into how 

communities respond to cropping system effects. 
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1.1 Introduction 

The interaction between soil microbial communities and their environment is a major driver of terrestrial 

agroecosystem dynamics. Microbial communities directly influence agroecosystem productivity and plant 

community composition (Callaway et al., 2004; Kardol et al., 2007), soil carbon dynamics (Bardgett et 

al., 2008), and major nutrient cycles (Hawkes et al., 2005; Nannipieri et al., 2003). Agroecosystems in 

turn influence the composition and function of soil microbial communities (Oehl et al., 2010; Sayer et al., 

2013). The move to develop cropping systems that can produce biomass feedstocks for bioenergy and 

bioproducts in a sustainable manner has motivated increased interest in the ecological effects of 

introducing diverse perennial systems onto land previously used for agriculture (Robertson et al., 2008), 

including the effect on microbial communities (Li et al., 2015; Mao et al., 2013). There is substantial 

evidence that the composition and functional capabilities of a soil microbial community change when 

transitioning between conventional agricultural and less intensively managed perennial systems (Allison 

et al., 2005; Liang et al., 2012; Xue et al., 2013). However, the timing of microbial community change 

following such a transition remains unclear. 

Soil microbial communities shift on a decadal timescale following establishment of perennial 

systems on soils with a previous history of annual cropping (Allison et al., 2005). Long-term shifts are not 

monotonic, with systems passing through transitional states as they continue to mature (Jangid et al., 

2010); short-term dynamics are less well characterized. Soil microbial communities exhibit less temporal 

variation than those in other environments (Shade et al., 2013) possibly because of the prevalence of 

dormancy in soil microbiota (Lennon and Jones, 2011), and microbial community compositions may 

reflect land uses from decades in the past (Jangid et al., 2011). This apparent resistance to change 

suggests transitions following land use change should occur in consistent, progressive steps toward major 

transitional or terminal states. At the same time, there is evidence that soil microbial communities are 

susceptible to external perturbation (Allison and Martiny, 2008) and that community succession can occur 

over a single growing season (Schmidt et al., 2007). From this perspective, microbial community 

transitions could be uneven in the short-term, exhibiting expected patterns only over longer periods of 
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time.  Given the linkage between microbial community composition and function (Frey et al., 2004; Reed 

and Martiny, 2007; Wakelin et al., 2008), the consistency with which soil microbial communities change 

following land use conversion could influence the variability of microbially-mediated functions during 

the establishment phase of perennial cropping systems. 

 Modern efforts to track changes in soil microbial communities typically employ culture-free 

characterization, particularly sequencing-based methods that interrogate the metagenome (Hirsch et al., 

2010). These metagenomes are dominated by bacterial sequences (Fierer et al., 2012), effectively causing 

most recent work in soil microbiology to primarily reflect bacterial communities and dynamics. Many 

characterization methods focus on distinct aspects of a community, such as the taxonomic makeup of 

individuals or the relative abundance of functional genes, which could potentially differ in their 

responsiveness to land use change.  

 We previously used phospholipid fatty acid (PLFA) profiling to examine the soil microbial 

community of continuous corn and sown tallgrass prairie cropping systems during the two to four years 

following their establishment on historically agricultural soil (Herzberger et al., 2014). In the present 

study, we reexamine these soils, focusing on their bacterial component. To better resolve the phylogenetic 

and functional changes undergone by this community, we supplemented the bacterial PLFA data with 

amplicon sequencing of 16S rRNA and nosZ, a gene that identifies denitrifiers, as well as functional 

genes and 16S rRNA sequences derived from shotgun metagenomics sequencing (SMG). Our goals were 

to compare how these four distinct methods characterized the divergence between the soil bacterial 

communities of recently-established corn (Zea mays L.) and sown tallgrass prairie, and evaluate whether 

yearly increases in this divergence were visible despite interannual variability in community composition.  

1.2 Methods 

1.2.1 Site description and soil sampling 

This experiment was conducted on the Bioenergy Cropping Systems Experiment (BCSE) at Arlington 

Agricultural Research Station (Arlington, Wisconsin, USA, 43°18′10 N, 89°20′40 W). The BCSE 

consisted of eight cropping systems, including continuous corn and sown tallgrass prairie, in a 
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randomized complete block design with five replicates (full details are given in Sanford et al., 2016). 

Prior to 2005, the site was used for agronomic trials and production, with corn, soybean, and alfalfa as the 

primary crops. From 2005 to 2007, the site was under a hayfield mix of alfalfa (Medicago sativa L.) and 

orchardgrass (Dactylis glomerata L.) (blocks 1 to 3) or corn (blocks 4 and 5). All treatments were 

established in spring 2008. The experiment is situated on a highly productive Plano silt loam (Fine-silty, 

Mixed, Superactive, Mesic Typic Arguidolls). These are deep (>1 m), well-drained soils with little relief, 

formed under tallgrass prairie vegetation in loess deposits over calcareous glacial till. Mean annual 

minimum and maximum air temperatures are -14.6 and 27.6 °C, respectively, with 869 mm mean annual 

precipitation.  

 Soils were sampled in late August in 2010, 2011, and 2012. For each plot, 5 cores (3.7 cm 

diameter, 15 cm depth) were collected at variable, arbitrary distances (<5 m) from a transect running 

lengthwise through the plot. Cores were immediately placed on wet ice, sieved to 2 mm within 24 h of 

sampling, and frozen at -20 °C within 48 h of sampling. Frozen soils were lyophilized for storage prior to 

lipid and DNA extraction. All molecular characterization methods were performed on each individual 

sample.  

1.2.2 PLFA extraction and quantification 

We employed a combined phospholipid fatty acid (PLFA) and fatty acid methyl ester (FAME) extraction 

method, as described in Herzberger et al. (2014). Soils were extracted with 1:2 CHCl3:CH3OH with the 

extracted lipids saponified with NaOH and methylated with HCl. Lipids were analyzed with a Hewlett-

Packard Agilent 6890A gas chromatograph (Agilent Tech. Co., Santa Clara, CA) equipped with a 25-

m×0.2-mm×0.33-µm Agilent Ultra-2 (5% phenyl)-methylpolysiloxane capillary column (Hewlett 

Packard, Palo Alto, CA) and flame ionization detector. Fatty acids were identified using MIDI’s 

EUKARY method database. We restricted our analysis to PLFAs frequently associated with bacteria, as 

described in Table S1.1 (Balser and Firestone, 2005; Frostegård et al., 1993; Hill et al., 2000; Wilkinson, 

1988; Zelles et al., 1992).  
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1.2.3 DNA extraction 

DNA was extracted from the soil using an adaptation of a method developed by Stevenson and Weimer 

(2007). Lyophilized soil was ground with liquid nitrogen in a ceramic mortar to disrupt aggregates. We 

prepared two tubes per sample, with each tube receiving 0.5 g ground soil (1 g total), 0.5 g 0.1-mm silica-

zirconia beads (BioSpec Products, Bartlesville, OK), 1 ml extraction buffer (EB; 100 mM Tris-HCl, 10 

mM EDTA, 0.15 M NaCl, pH 8.0), 50 µl 20% SDS, and 500 µl cold phenol (buffer equilibrated to pH 

7.9). Tubes were bead beaten for 10 min on a converted paint shaker, incubated 10 min at 60 °C, then 

beaten an additional 10 min. Samples were separated by centrifugation (16,000 × g, 10 min) and the 

aqueous layer was washed successively with 500 µl phenol, 500 µl 1:1 phenol:chloroform, and 500 µl 

chloroform, with centrifugation (16,000 × g, 10 min) at each step and the aqueous layer brought to 1 ml 

volume with EB. To precipitate, 900 µl of aqueous layer was combined with 100 µl 3 M Na acetate and 

600 µl isopropanol, incubated for 30 min at 4 °C and centrifuged (16,000 × g, 20 min). The DNA pellet 

was washed once with 70% ethanol, then both tubes from a sample were recombined in 150 µl 1/10 TE 

(10 mM Tris pH8, 0.1 mM EDTA). These samples were subsequently cleaned with a Power Soil Cleanup 

Kit (Mo Bio Laboratories, Carlsbad, CA) following manufacturer instructions. 

1.2.4 DNA sequencing and classification 

We characterized the composition of the overall and denitrifying bacterial communities using 16S rRNA 

and nosZ amplicons. We amplified the V6-V8 variable region of the bacterial 16S rRNA gene using 

primers described by de Oliveira et al. (2013) and a region of the catalytic subunit of nosZ using nosZF 

(Kloos et al., 2001) and nosZ1622R (Throbäck et al., 2004) primers. Primer sequences are given in Table 

S1.2. Segments were amplified using 5-ng template DNA and 0.5 µM of each primer in 25 µl volume 

using Platinum Blue PCR SuperMix (Life Technologies, Carlsbad, CA). Polymerase chain reaction 

(PCR) was performed following de Oliveria et al (2013): denaturation for 2 min at 94 °C; 30 cycles of 30 

s at 94 °C, 45 s at 50 °C, and 1.75 min at 68 °C; and a final extension for 10 min at 68 °C. We limited our 

amplification to 30 cycles to allow for detection of low-copy template and to ensure the overwhelming 

majority of amplicons would be created in the 15-25 cycle range (Lee et al., 1996). PCR products were 
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size-selected by electrophoresis on a 1% AquaPōr LM low-melt agarose (National Diagnostics, Atlanta, 

GA) TAE gel and recovered with a Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA). 

Sequencing was carried out on a Roche 454 GS Junior Titanium sequencer following manufacturer 

protocols and using Lib-L emulsion PCR kits (Roche Life Sciences, Indianapolis, IN) with ~0.8 DNA 

molecules per bead.  

The program mothur v. 1.33.3 (Schloss et al., 2009) was used to process 16S rRNA amplicon 

sequences. Reads were denoised using shhh.flows. Quality filtration removed sequences under 200 

nucleotides or with >6 nucleotide homopolymers, >2 primer mismatches, or any barcode mismatches. 

Alignment was done against the SILVA reference database (Pruesse et al., 2007), removing sequences of 

eukaryotic origin. Chimeric sequences were removed using chimera.uchime. Operational Taxonomic 

Units (OTUs) were defined at 95% sequence identity and a representative sequence for each OTU was 

taxonomically classified with the Ribosomal Database Project Classifier (Wang et al., 2007) using an 

assignment cutoff of 0.8.  

Processing of nosZ amplicons was similarly carried out in mothur through the quality filtration 

step. Further processing was conducted through the Functional Gene Pipeline (Fish et al., 2013). Unique 

sequences were translated with Framebot (Wang et al., 2013) with a minimum length of 66 amino acids 

and an identity cutoff of 0.3. These translations were aligned with Aligner (Cole et al., 2014), then 

clustered using mcClust (Fish et al., 2013). NosZ OTUs were classified at 90% amino acid sequence 

similarity, following Mao et al. (2013). 

 Shotgun sequencing was carried out at the Department of Energy Joint Genome Institute using 

the Illumina HiSeq platform (Illumina, San Diego, CA), multiplexing 12 samples per lane. Trimmed and 

screened reads were assembled using SOAPdenovo (v1.05). Gene calling was done with FragGenScan 

(v1.16), prokaryotic GeneMark.hmm (v2.8), Metagenome Annotator (v1.0), and Prodigal (v2.50). Reads 

identified as belonging to the 16S rRNA genes were taxonomically classified in the same fashion as the 

16S rRNA amplicons. Reads were annotated using the updated clusters of orthologous groups (COGs) 

database (Galperin et al., 2015; Tatusov et al., 2000). 
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1.2.5 Statistical analysis 

Data were analyzed in the R statistical package and environment (v3.1.1, R Core Team, 2014). 

Multivariate analyses used the ‘vegan’ package (Oksanen et al., 2013). Prior to multivariate analysis, 

individual PLFAs, functional genes, or OTUs were removed from the data if not present in at least three 

out of five blocks and two out of three years. We did not relativize PLFA values by sample, as PLFA 

extractions are quantitative (Liang et al., 2012). COG abundances were relativized following He et al. 

(2015). COG read counts were first relativized by the length of their consensus sequence to neutralize the 

overrepresentation of longer sequences. We then used the mean abundances of 37 COGs present in a 

single copy in nearly all prokaryotic genomes (Table S1.3) to relativize across samples. Amplicon read 

counts were relativized to the total number of reads in the sample. Bray-Curtis distances were calculated 

for all relativized measures. This metric was not appropriate for PLFA, which used absolute distances; 

Euclidian distances were used here instead.  

 Standard statistical comparisons used linear mixed effects models from the ‘lme4’ package (Bates 

et al., 2015) using block as a random term. Means testing was done with the ‘lsmeans’ package (Lenth, 

2013).  

1.2.6 Accession numbers 

PLFA data are available on the Dryad database (http://datadryad.org) under doi: 10.5061/dryad.rk384. 

Amplicon sequences were deposited in the NCBI Sequence Read Archive (www.ncbi.nlm.nih.gov/sra) as 

BioProject 279094. Shotgun metagenomes are in the Joint Genome Institute Genomes Online Database 

(https://gold.jgi.doe.gov) under Study ID Gs0095510. Accession numbers for individual samples are 

given in Table S1.4. 

1.3 Results 

1.3.1 Sequencing overview 

Shotgun metagenomic (SMG) sequencing generated 1.3 to 2.0 Gbp per sample (48.3 Gbp total), with 2.4 

to 4.0 × 106 functional gene reads of which 2,151 to 8,135 reads per sample mapped to the 16S rRNA. 
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Diversity and coverage statistics for individual samples are given in Table S1.4. With amplicon 

sequencing, we generated 2,382 to 6,206 reads per sample for 16S rRNA and 1,116 to 6,681 reads per 

sample for nosZ. We found 3,717 operational taxonomic units (OTUs) using 16S rRNA amplicon 

sequencing (490 to 750 OTUs per sample), and 1,072 nosZ OTUs (150 to 290 per sample). Good's 

coverage for 16S rRNA amplicons (89 to 95%, 98.5% globally) was lower than for nosZ amplicons (93 to 

99%, 99.6% globally). Shannon’s diversity indices for 16S rRNA OTUs were lower for 2010 corn than 

for all other crop-year combinations, which were not different from each other, while Shannon’s diversity 

indices for nosZ OTUs were the same for all crop-year combinations (Table S1.5). Read number was 

correlated to unique OTUs for 16S rRNA amplicons (r = 0.79, P < 0.0001), but not for nosZ amplicons (r 

= 0.14, P = 0.22). Within samples, unique OTUs for both amplicon types were correlated (r = 0.77, P < 

0.0001), but total read numbers were not (r = 0.21, P = 0.13). 

1.3.2 Factors determining microbial community composition 

We used adonis, a permutational analogue to multivariate analysis of variance, to quantify treatment 

effects on overall community composition (Table 1.1). All characterization methods found statistically 

significant cropping system and interannual effects, although interannual effects were only weakly 

significant in the PLFA and nosZ data.  The amount of variation these factors explained differed among 

methods. Much of the variation in the PLFA data existed between cropping systems, while interannual 

effects were less important. Conversely, more of the variance in the SMG COG and rRNA amplicon data 

existed among years than between systems. These were the only methods to have significant interactions 

between years and cropping systems, likely driven by the 2010 continuous corn samples (Fig. 1.1). Soil 

carbon and nitrogen concentrations did not change between 2009 and 2013 and were not different 

between the two cropping systems (Table S1.5). Soil bulk density did not differ between cropping 

systems in 2009, but was lower overall in 2013, more so in the sown tallgrass prairie than in the 

continuous corn system (Table S1.5).  
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1.3.3 Ordination of community compositions 

Two-dimensional NMDS ordination adequately represented the community compositions found by all 

four characterization methods (Fig. 1.1), although two-dimensional stress was greater for the two 

amplicon sequencing datasets (Table 1.2). PLFA profiles of the continuous corn and restored prairie 

bacterial communities were clearly distinct, with greater variability within the prairie communities (Fig. 

1.1A). By contrast, in both rRNA amplicon and SMG COG profiles there was more variability in the corn 

system than the prairie system, largely stemming from the differentiation of 2010 corn-associated soil 

from all other systems (Fig. 1.1 B, C). Despite overall separation of the bacterial communities from both 

cropping systems, there was no indication that this separation changed over the study period. In the nosZ 

amplicon data, both corn and prairie communities shifted in the same direction in 2011 before reversing 

that transition in 2012 (Fig. 1.1 D).  

 The three DNA-based characterization methods were correlated both in the Bray-Curtis distances 

between pairs of samples and in the distances among samples following NMDS ordination (Table 1.2). 

The SMG COG and 16S rRNA amplicon data were particularly well correlated. Inter-sample distance 

correlations between PLFA and the DNA-based data were significant, but generally weaker (for exact 

values, see Table 1.2).  

1.3.4 Taxonomic profiles from amplicon and short read sequencing 

We obtained 16S rRNA sequences from amplicons and SMG data, with roughly equal numbers of reads 

generated from both methods (Table S1.4). At the phylum level, both datasets were dominated by 

Actinobacteria, Acidobacteria, and Proteobacteria (Fig. 1.2, Table S1.6). In both datasets, 

Verrucomicrobia abundance increased over time and was higher in sown tallgrass prairie than corn 

cultivation. Similarly, both datasets observed high γ-Proteobacteria abundance in the corn system in 2010. 

 Beyond these similarities, the taxonomic profiles generated by amplicon and SMG sequencing 

contained substantial differences. The proportions of reads assigned to a given phylum differed 

significantly between the two sequencing approaches for all common phyla (Table S1.6, common phyla 

defined as accounting for >5% of all reads from at least one of the systems). Actinobacteria were twice as 
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abundant in the SMG sequences as in the amplicon sequences. The SMG sequence data also contained 

cropping system and temporal trends that were not present in the amplicon sequence data. In the SMG 

data, Firmicutes and Bacteroidetes were significantly more abundant in sown tallgrass prairie than 

continuous corn cultivation. SMG reads from major Gram-positive phyla (Actinobacteria and Firmicutes) 

became rarer over time, while reads from rare or unidentified taxa became more abundant. 

1.3.5 Functional group biomass and gene abundance 

We compared ratios of PLFAs that are frequently associated with either Gram-positive or Gram-negative 

bacteria (Table S1.1) to ratios of SMG and amplicon 16S rRNA reads grouped by phylum-level cell wall 

type (Gram-positive or Gram-negative, Table S1.6). Interannual and cropping system effects on these 

ratios differed among the three community characterization methods (Fig. 1.3). PLFA biomass associated 

with Gram-negative taxa increased in the prairie system, but did not change over time. In contrast, SMG 

16S rRNA reads belonging to Gram-negative phyla were not different between cropping systems but 

became more prevalent over time in the prairie system. There were no interannual or cropping system 

effects in the 16S rRNA amplicons.  

1.4. Discussion 

1.4.1 Characterization methods differed in their detection of cropping system divergence 

In this study, we used four methods to characterize change over time in the bacterial communities of 

continuous corn and sown tallgrass restored prairie cropping systems. All methods revealed significant 

differences between systems, but varied in the extent of the differences they showed. The greatest 

cropping system effects were observed using bacterial PLFA profiles, which produced similar results to 

those previously observed using PLFAs from the entire microbial community (Herzberger et al., 2014). 

PLFAs associated with Gram-negative bacteria were more abundant in the prairie, matching the 

difference observed between corn and prairie sites throughout south-central Wisconsin (Liang et al., 

2012). Differences between cropping systems were considerably smaller, but still significant, for the 

DNA-based methods. 



12 

 

Biomass-based microbial community measures, such as PLFA, may be more responsive to 

environmental change than those based on DNA. Prior studies have observed responses to seasonal 

variability (Jangid et al., 2010, 2011) and vegetation composition (Ritz et al., 2004) in lipid profiles, but 

not in 16S rRNA data. The apparently limited responsiveness of DNA-based characterization methods 

may in part stem from the prevalence of dormant organisms (Lennon and Jones, 2011) as well as the 

potential persistence of DNA from nonviable organisms (Córdova-Kreylos et al., 2006), both of which 

could delay detection of changes in the microbial community. Our results highlight the continued value of 

lipid profiling as a valuable tool for assessing microbial community change and a useful complement to 

metagenomic methods. 

  We expected that the sown tallgrass restored prairie system would gradually and progressively 

shift its associated bacterial community toward compositions typically found under restored prairies in 

this region (Allison et al., 2005; Liang et al., 2012). Progressive divergence from the corn system 

bordered on statistical significance in the PLFA data, similar to increasing trends in AMF, Gram-

negative, and total microbial biomass we had previously reported (Herzberger et al., 2014), and suggested 

that continued measurement of the systems would have captured increasing divergence. For DNA-based 

methods, however, we saw no indication of increasing differentiation during the study period. Increases in 

PLFA biomass are detectable in the top 5 cm of soil shortly after prairie restoration, but are only visible at 

greater depths once the restoration has been in place for considerably longer (Allison et al., 2007). This 

likely reflects the increased availability of oxygen and resources near the soil surface, due in part to the 

greater concentration of plant roots. Sampling from the top 15 cm of soil may have diluted the more 

rapidly shifting near-surface microbial community. This dilution may not have been as impactful for 

PLFA profiles, which should reflect the concentration of microbial biomass in the top 5 cm of soil (Fierer 

et al., 2003), as it would be for DNA-based methods, potentially explaining the apparent difference in 

their responsiveness. At the same time, we observed considerable interannual variability in bacterial 

communities, suggesting our observations were not driven solely by a slower response to land use change 

by bacteria deeper in the soil profile. The dramatic shift in the composition of corn associated bacteria 
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between 2010 and 2011, observed in both the 16S rRNA and SMG data, best exemplifies this. Soil 

microbial communities may exhibit considerable seasonal variability (Schmidt et al., 2007). Some of the 

interannual variability we observed may have been due to slight differences in the seasonal timing of our 

sampling. Nonetheless, all methods detected differences between the two cropping systems only two 

years after their establishment. The change in disturbance regimes may have spurred the initial rapid 

differentiation (Allison et al., 2005; Jangid et al., 2010), with broader cropping-system differences driving 

more gradual shifts in the community.  

A variable not directly addressed in our work is the impact of storage on sample quality. There 

are varying views on the appropriate time a soil may be stored unfrozen prior to microbial analyses 

(Bloem et al., 2005). Although it is generally accepted that freezing and extraction should happen as soon 

after sampling as possible, some guidelines suggest soils may be stored under refrigeration for several 

weeks prior to PLFA extraction (Palojärvi, 2005) and in well-drained soils no changes in PLFA biomass 

were observed over 30 days of refrigeration (Wang et al., 2014), although other studies report changes 

within shorter time periods (Wu et al., 2009). Soils from our two cropping system might have responded 

differently to storage. Agricultural soils may be less perturbed by storage than grassland or forest soils 

(Cui et al., 2014), possibly because microbial communities in the latter systems typically receive more 

labile carbon (Gonzalez-Quiñones et al., 2009). Although no differences in total soil carbon developed 

during our study period (section 3.2), it is possible that a difference in the pool of available carbon could 

have gone unnoticed. If so, the sown tallgrass prairie, with its more active rhizosphere, could have lost 

more biomass during storage than the corn-associated soils, causing us to underestimate divergence 

between the two systems. 

1.4.2 DNA-based methods identified similar community compositions 

Soil bacterial community composition was well correlated among DNA-based methods. Fierer et al. 

(2012) reported high correlation between taxonomic composition and functional gene abundance over an 

ecological gradient that included arctic tundra, desert, and tropical forests. Our findings suggest this 

relationship may hold within a gradient of ecologically similar systems. Although many functional genes 
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in bacteria are not restricted to a narrow set of taxa (Ragan and Beiko, 2009), there are likely linkages 

between taxonomic and functional composition at the community level (Langille et al., 2013).  

 We observed limited nosZ diversity, dominated by a small number of taxa, similar to previously 

published results (Ruiz-Rueda et al., 2009). It is also worth noting that the nosZ primers we used do not 

capture ‘atypical’ nosZ genes (Orellana et al., 2014; Sanford et al., 2012), indicating our analyses exclude 

a sizeable component of the denitrifying community. It is, however, interesting that the number of unique 

nosZ types we observed in a sample correlated strongly with the number of unique 16S rRNA OTUs. This 

suggests that the subset of the nosZ-containing community we sampled largely responded to broad drivers 

of bacterial diversity, even though nosZ community composition did not display the same patterns as 

compositions based on taxonomic or functional gene abundances.  

1.4.3 Characterization methods detected different abundances of specific groups 

The abundance of specific bacterial groups was more influenced by interannual and cropping system 

effects in the SMG sequences than the 16S rRNA amplicon sequences. There were phylum-level 

abundance differences between the cropping systems in the SMG data that were not present in the 

amplicon data, but the inverse was not true. SMG-derived 16S rRNA sequences have several advantages 

over amplicon sequences, notably in the avoidance of primer biases (Logares et al., 2013). Primer biases 

were likely behind the underrepresentation of Actinobacteria in our 16S rRNA amplicon data. Fierer et al. 

(2012) found a similar underrepresentation of Actinobacteria in amplicon data, albeit using a different 

16S rRNA region. Although abundance of Bacteroidetes and Firmicutes did not differ markedly between 

methods, only SMG data detected cropping system differences in their abundance. The increased 

abundance of γ-Proteobacteria in the 2010 continuous corn soils stands as an interesting counterpoint, as 

this dynamic was present in both datasets. It seems reasonable that γ-Proteobacteria were similarly well 

detected by both methodologies, and further implies that many responses to cropping system and 

interannual effects occur in bacterial groups that were less well detected by our amplicon sequencing. 

 The interpretation of certain PLFAs as indicative of Gram-positive or Gram-negative bacteria is 

problematic, both because PLFAs are not strict phylogenetic markers (Frostegård et al., 2011), and 
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because Gram staining is of decreasing utility as a framework for classifying bacteria. Nonetheless, this 

terminology remains common in soil microbiology, possibly because these sets of lipids frequently 

exhibit coherent and interesting ecological behaviors. Rhizosphere-extracted PLFAs associated with 

Gram-negative bacteria are enriched in carbon from plant exudates (Butler et al., 2003), while both sets of 

PLFAs can correlate to distinct nitrogen cycling processes in the soil (Balser and Firestone, 2005). In our 

earlier study, we found that PLFAs associated with Gram-negative organisms increased in the sown 

tallgrass prairie while PLFAs associated with Gram-positive organisms were similar for both systems 

(Herzberger et al., 2014). In this study, we tested whether these PLFA-based patterns behaved similarly to 

DNA from phyla that could be classified as Gram-positive or Gram-negative, finding that the two 

methods had entirely different dynamics. This may indicate a mismatch between classification methods, 

microbial activity vs abundance, or be another instance of the differences in how PLFAs and DNA 

respond to environmental influences (section 4.1). Our findings provide further evidence that comparison 

of this set of fatty acids can be an ecologically informative aspect of PLFA profiles. We hope this further 

highlights the need to revisit the use of the Gram-negative/-positive framework for interpreting these fatty 

acids and the potential utility of identifying the taxa that these biomarkers actually represent. 

 1.5 Conclusions 

The detected soil bacterial community composition of continuous corn and restored tallgrass restored 

prairie cropping systems were found to be different by all four characterization methods we employed. 

The systems differed more in the composition of their bacterial community biomass, as detected by PLFA 

profiling, than in their functional gene or taxonomic compositions as detected by DNA amplicon 

sequencing. Differences between the two cropping systems did not increase over the three years that we 

sampled the soils. All characterization methods identified some effect of prairie establishment, but with 

DNA-based methods interannual variability appeared to have an equivalent impact. Overall community 

compositions detected by the alternative methods were fairly well correlated, although abundance 

estimates for specific taxa could vary substantially among methods. We found that soil microbial 
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communities could change considerably from year to year, but that these changes did not contribute 

toward a progressive divergence or convergence between two very different land uses. 
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Table 1.1 Factors accounting for multivariate variance from four methods assessing microbial community change over time between corn and 

prairie cropping systems 

  

 

 
PLFA 

 

 

 

SMG  

functional genes 

 

 

 

16S rRNA 

amplicon OTUs 

 

 

 

nosZ  

amplicon OTUs  

 Factor df  SS R2 P  SS R2 P  SS R2 P  SS R2 P 

Cropping 

system 1 

 

0.071 0.62 <0.01 

 

0.001 0.13 <0.01 

 

0.173 0.09 <0.01 

 

0.352 0.15 <0.01 

Year 2  0.008 0.07 0.04  0.003 0.23 <0.01  0.361 0.20 <0.01  0.225 0.10 0.05 

System × Year 2  0.006 0.06 0.07  0.001 0.08 0.04  0.181 0.10 <0.01  0.069 0.03 0.99 

Residuals 24  0.029 0.25 

 

 0.007 0.56 

 

 1.121 0.61 

 

 1.682 0.72 

 Total 29  0.114 

  

 0.012 1.00 

 

 1.836 

  

 2.327  

 PLFA: bacterial phospholipid fatty acids; SMG: shotgun metagenomic sequencing; OTU: operational taxonomic unit; SS: sum of 

squares. Values estimated using adonis. P-values based on 9999 data permutations.  
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Table 1.2 Correlations of community distance matrices and nonmetric multidimensional scaling (NMDS) ordinations among four methods of 

assessing microbial community composition 

Measurement 

type 

Bray-Curtis distance (Mantel statistic)  NMDS distance (Procrustes correlation)  

NMDS 

linear R2 PLFA COGs 

16S 

rRNA nosZ  PLFA COGs 

16S 

rRNA nosZ 
 

PLFA ---- 0.180** 0.168** 0.313***  ---- 0.352* 0.417* 452**  0.999 

COGs 0.180** ---- 0.750*** 0.461***  0.352* ---- 0.747*** 0.542***  0.964 

16S rRNA OTU 0.168* 0.750*** ---- 0.557***  0.417* 0.747*** ---- 0.576***  0.915 

nosZ cluster 0.313*** 0.461*** 0.557*** ----  0.452** 0.542*** 0.576*** ----  0.890 

PLFA: bacterial phospholipid fatty acids; COGs: clusters of orthologous groups of proteins, based on shotgun metagenomic sequence. 

NMDS linear R2 is the coefficient of determination between Bray-Curtis and NMDS ordination distances for all pairs of samples. 

Significance of correlation-like statistics was based on 9999 random permutations: * P < 0.05, ** P < 0.01, *** P < 0.001 
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Table S1.1 Interpretations of PLFAs 

Functional group PLFAs 

Gram-negative bacteria a15:0 

 

i15:0 

 

a17:0 

 

i17:0 

Gram-positive bacteria 16:1ω7c 

 

17:0cy 

 

18:1ω5c 

 

18:1ω7c 

 

19:0cy 

Common to bacteria 15:0 

 

16:0 

 

16:1ω9c 

 

17:0 

 

a19:0 

 

i19:0 
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Table S1.2 Primers used for multiplex 16S and nosZ amplicon sequencing 

Gene Primer Sequencing adapter Barcode Primer Reference 

16S 

subunit 1392R-GS01 ccatctcatccctgcgtgtctccgactcag CATCG acgggcggtgtgtRc 1 

 

1392R-GS02 ccatctcatccctgcgtgtctccgactcag CATAT acgggcggtgtgtRc 1 

 

1392R-GS03 ccatctcatccctgcgtgtctccgactcag CAGCT acgggcggtgtgtRc 1 

 

1392R-GS04 ccatctcatccctgcgtgtctccgactcag CAGTG acgggcggtgtgtRc 1 

 

1392R-GS05 ccatctcatccctgcgtgtctccgactcag ACTCT acgggcggtgtgtRc 1 

 

1392R-GS06 ccatctcatccctgcgtgtctccgactcag ACTAC acgggcggtgtgtRc 1 

 

1392R-GS07 ccatctcatccctgcgtgtctccgactcag ACGCG acgggcggtgtgtRc 1 

 

1392R-GS08 ccatctcatccctgcgtgtctccgactcag ACGAT acgggcggtgtgtRc 1 

 

1392R-GS09 ccatctcatccctgcgtgtctccgactcag ACATG acgggcggtgtgtRc 1 

 

1392R-GS10 ccatctcatccctgcgtgtctccgactcag ACAGC acgggcggtgtgtRc 1 

 

1392R-GS11 ccatctcatccctgcgtgtctccgactcag ATCTC acgggcggtgtgtRc 1 

 

1392R-GS12 ccatctcatccctgcgtgtctccgactcag ATCGT acgggcggtgtgtRc 1 

 

1392R-GS13 ccatctcatccctgcgtgtctccgactcag ATCAG acgggcggtgtgtRc 1 

 

1392R-GS14 ccatctcatccctgcgtgtctccgactcag ATGTG acgggcggtgtgtRc 1 

 

1392R-GS15 ccatctcatccctgcgtgtctccgactcag ATGAC acgggcggtgtgtRc 1 

  

cctatcccctgtgtgccttggcagtctcag aaactYaaaKgaattgacgg 1 

nosZ nosZR-01 ccatctcatccctgcgtgtctccgactcag TCGCTAG cgSaccttSttgccstYgcg 2 

 

nosZR-02 ccatctcatccctgcgtgtctccgactcag TCGCTAG 
cgSaccttSttgccstYgcg 

2 

 

nosZR-03 ccatctcatccctgcgtgtctccgactcag TCGCTAG 
cgSaccttSttgccstYgcg 

2 

 

nosZR-04 ccatctcatccctgcgtgtctccgactcag TCGCTAG 
cgSaccttSttgccstYgcg 

2 

 

nosZR-05 ccatctcatccctgcgtgtctccgactcag TCGCTAG 
cgSaccttSttgccstYgcg 

2 

 

nosZR-06 ccatctcatccctgcgtgtctccgactcag 
TGCATAG cgSaccttSttgccstYgcg 

2 

 

nosZR-07 ccatctcatccctgcgtgtctccgactcag 
TGTGTAC cgSaccttSttgccstYgcg 

2 

 



 
 

 

2
7

 

Table S1.2 continued. 

Gene Primer Sequencing adapter Barcode Primer Reference 

nosZ nosZR-08 ccatctcatccctgcgtgtctccgactcag 
TGACTGA cgSaccttSttgccstYgcg 

2 

 

nosZR-09 ccatctcatccctgcgtgtctccgactcag 
TACTCGA cgSaccttSttgccstYgcg 

2 

 

nosZR-10 ccatctcatccctgcgtgtctccgactcag 
TATCTCG cgSaccttSttgccstYgcg 

2 

 

nosZR-11 ccatctcatccctgcgtgtctccgactcag 
TATACTG cgSaccttSttgccstYgcg 

2 

 

nosZR-12 ccatctcatccctgcgtgtctccgactcag 
CTCTGAG cgSaccttSttgccstYgcg 

2 

 

nosZR-13 ccatctcatccctgcgtgtctccgactcag 
CTCATGA cgSaccttSttgccstYgcg 

2 

 

nosZR-14 ccatctcatccctgcgtgtctccgactcag 
CTGCGAT cgSaccttSttgccstYgcg 

2 

 

nosZR-15 ccatctcatccctgcgtgtctccgactcag 
CTGTCGA cgSaccttSttgccstYgcg 

2 

 

nosZF cctatcccctgtgtgccttggcagtctcag cgYtgttcMtcgacagccag 3 

1) de Oliveria et al., 2013; 2) Kloos et al., 2001; 3) Throback et al., 2004. 
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Table S1.3 Single-copy housekeeping COGs used to relativize within samples 

COG Function 

Sequence 

length 

(bp) 

COG0016 Phenylalanyl-tRNA synthetase alpha subunit 1005 

COG0048 Ribosomal protein S12 387 

COG0049 Ribosomal protein S7 444 

COG0051 Ribosomal protein S10 312 

COG0052 Ribosomal protein S2 756 

COG0072 Phenylalanyl-tRNA synthetase beta subunit 1950 

COG0080 Ribosomal protein L11 423 

COG0081 Ribosomal protein L1 684 

COG0087 Ribosomal protein L3 654 

COG0088 Ribosomal protein L4 642 

COG0090 Ribosomal protein L2 825 

COG0091 Ribosomal protein L22 360 

COG0092 Ribosomal protein S3 699 

COG0093 Ribosomal protein L14 366 

COG0094 Ribosomal protein L5 540 

COG0096 Ribosomal protein S8 396 

COG0097 Ribosomal protein L6P/L9E 534 

COG0098 Ribosomal protein S5 543 

COG0099 Ribosomal protein S13 363 

COG0100 Ribosomal protein S11 387 

COG0103 Ribosomal protein S9 390 

COG0127 Xanthosine triphosphate pyrophosphatase 582 

COG0149 Triosephosphate isomerase 753 

COG0164 Ribonuclease HII 597 

COG0184 Ribosomal protein S15P/S13E 267 

COG0185 Ribosomal protein S19 279 

COG0186 Ribosomal protein S17 261 

COG0197 Ribosomal protein L16/L10E 438 

COG0200 Ribosomal protein L15 456 

COG0244 Ribosomal protein L10 525 

COG0256 Ribosomal protein L18 375 

COG0343 Queuine/archaeosine tRNA-ribosyltransferase 1116 

COG0481 Membrane GTPase LepA 1809 

COG0504 CTP synthase (UTP-ammonia lyase) 1599 

COG0532 Translation initiation factor 2 (IF-2; GTPase) 1527 

COG0533 Metal-dependent proteases with possible chaperone activity 1026 

COG0541 Signal recognition particle GTPase 1353 
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Table S1.4 Sequence coverage and diversity statistics by sample 

   

16S amplicon sequencing 

System Year Block Reads  OTUs Rare Coverage Shannon's Chao1 

SRA 

Accession 

Corn 2010 1 4359 653 139 0.928 5.03 1231.1 SRX969981 

Corn 2011 1 3904 681 157 0.914 5.19 1257.8 SRX970055 

Corn 2012 1 4602 733 198 0.925 5.18 1219.4 SRX970864 

Corn 2010 2 6206 727 239 0.947 4.76 1262.4 SRX970019 

Corn 2011 2 4016 692 208 0.917 5.12 1200.6 SRX970059 

Corn 2012 2 3941 635 179 0.927 5.10 1059.7 SRX970866 

Corn 2010 3 4652 601 170 0.942 4.56 1015.1 SRX970030 

Corn 2011 3 4391 721 193 0.924 5.18 1196.3 SRX970061 

Corn 2012 3 2852 598 114 0.903 5.24 935.7 SRX970868 

Corn 2010 4 3370 545 93 0.924 4.86 892.2 SRX970034 

Corn 2011 4 2741 532 83 0.909 5.14 889.8 SRX970064 

Corn 2012 4 3051 532 85 0.921 5.12 845.6 SRX970870 

Corn 2010 5 3417 490 82 0.934 4.70 773.8 SRX970038 

Corn 2011 5 3013 572 112 0.914 5.12 912.1 SRX970066 

Corn 2012 5 2383 495 93 0.898 4.97 853.6 SRX970872 

Prairie 2010 1 4158 719 222 0.914 5.11 1274.7 SRX970874 

Prairie 2011 1 4462 715 205 0.922 5.07 1211.1 SRX971228 

Prairie 2012 1 4211 750 211 0.914 5.15 1226.1 SRX971275 

Prairie 2010 2 4121 711 178 0.918 5.22 1175.1 SRX970878 

Prairie 2011 2 3881 690 173 0.914 5.17 1162.5 SRX971233 

Prairie 2012 2 3637 626 150 0.918 5.03 1077.6 SRX971282 

Prairie 2010 3 4043 673 169 0.919 5.07 1178.9 SRX970881 

Prairie 2011 3 2912 583 98 0.905 5.16 960.5 SRX971239 

Prairie 2012 3 2574 564 77 0.894 5.26 975.0 SRX971291 

Prairie 2010 4 2982 564 193 0.910 5.14 958.6 SRX971225 

Prairie 2011 4 3094 581 104 0.908 5.08 1030.7 SRX971259 

Prairie 2012 4 2777 510 71 0.911 5.08 917.2 SRX971296 

Prairie 2010 5 3548 619 119 0.924 5.17 934.4 SRX970885 

Prairie 2011 5 3090 592 110 0.904 5.19 1109.1 SRX971267 

Prairie 2012 5 2714 517 77 0.908 4.97 871.9 SRX971300 

Total 

  

109102 3717 2554 0.985 5.40 6311.0 

 Maximum 

  

6206 750 239 0.947 5.26 1274.7 

 Minimum 

  

2383 490 71 0.894 4.56 773.8 
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Table S1.4 cont. 

   

nosZ amplicon sequencing 

System Year Block Reads OTUs Rare Coverage Shannon's Chao1 

SRA 

Accession 

Corn 2010 1 4173 232 27 0.982 3.74 343.0 SRX970011 

Corn 2011 1 5625 270 49 0.981 3.92 386.0 SRX970056 

Corn 2012 1 4697 295 47 0.985 3.90 401.9 SRX970865 

Corn 2010 2 4733 263 47 0.987 3.79 311.4 SRX970024 

Corn 2011 2 4807 266 44 0.981 3.57 347.3 SRX970060 

Corn 2012 2 3742 208 22 0.982 3.52 298.2 SRX970867 

Corn 2010 3 5769 261 34 0.987 3.65 362.9 SRX970031 

Corn 2011 3 1179 235 28 0.984 3.71 317.1 SRX970063 

Corn 2012 3 1521 213 40 0.929 4.07 310.9 SRX970869 

Corn 2010 4 6681 175 27 0.955 3.34 259.4 SRX970037 

Corn 2011 4 4846 155 16 0.942 3.28 264.8 SRX970065 

Corn 2012 4 1389 191 28 0.957 3.21 287.3 SRX970871 

Corn 2010 5 4902 169 15 0.976 3.38 257.5 SRX970040 

Corn 2011 5 5106 181 26 0.948 3.33 312.7 SRX970067 

Corn 2012 5 1348 150 24 0.940 3.42 246.1 SRX970873 

Prairie 2010 1 5938 296 60 0.986 3.89 406.7 SRX970875 

Prairie 2011 1 1595 246 37 0.983 3.62 382.1 SRX971232 

Prairie 2012 1 1551 265 43 0.985 3.56 356.4 SRX971277 

Prairie 2010 2 4471 248 37 0.985 3.81 349.1 SRX970880 

Prairie 2011 2 1641 170 19 0.942 3.69 237.0 SRX971237 

Prairie 2012 2 1116 257 36 0.984 3.62 353.9 SRX971287 

Prairie 2010 3 1252 222 29 0.934 3.93 359.5 SRX970884 

Prairie 2011 3 1212 202 35 0.937 3.83 349.2 SRX971243 

Prairie 2012 3 5469 199 26 0.939 3.84 282.0 SRX971293 

Prairie 2010 4 1167 164 22 0.943 3.36 235.5 SRX971226 

Prairie 2011 4 1834 189 28 0.931 3.44 328.9 SRX971262 

Prairie 2012 4 1190 200 27 0.946 3.46 317.9 SRX971299 

Prairie 2010 5 1283 262 54 0.985 3.56 356.9 SRX970886 

Prairie 2011 5 2518 164 16 0.934 3.35 275.2 SRX971269 

Prairie 2012 5 1503 177 20 0.957 3.33 236.4 SRX971301 

   

94258 1072 641 0.996 3.98 1697.0 

 

   

6681 296 60 0.987 4.07 406.7 

 

   

1116 150 15 0.929 3.21 235.5 
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Table S1.4 cont 

   

Shotgun metagenomic sequencing 

System Year Block 

Size 

(Gbp) 

Sequences 

(millions) 

COG sequences 

(millions) 16S sequences 

JGI Taxon 

Object ID 

Corn 2010 1 1.84 9.32 3.76 5285 3300002110 

Corn 2011 1 1.86 9.23 3.66 5328 3300002109 

Corn 2012 1 1.35 6.63 2.65 2151 3300001694 

Corn 2010 2 2.02 10.09 4.04 7924 3300002117 

Corn 2011 2 1.86 9.34 3.62 6220 3300002112 

Corn 2012 2 1.34 6.54 2.58 2833 3300001693 

Corn 2010 3 1.84 9.21 3.74 6352 3300002108 

Corn 2011 3 1.47 7.30 2.84 2995 3300001698 

Corn 2012 3 1.37 6.70 2.63 2718 3300001695 

Corn 2010 4 1.86 9.32 3.72 6296 3300002111 

Corn 2011 4 1.39 6.82 2.67 2798 3300001696 

Corn 2012 4 1.48 7.27 2.87 3211 3300001697 

Corn 2010 5 1.96 9.80 4.03 8135 3300002115 

Corn 2011 5 1.56 7.72 3.01 2993 3300001703 

Corn 2012 5 1.27 6.22 2.46 2426 3300001691 

Prairie 2010 1 1.87 9.40 3.67 5561 3300002113 

Prairie 2011 1 1.33 6.50 2.62 2213 3300001692 

Prairie 2012 1 1.53 7.51 2.93 2970 3300001700 

Prairie 2010 2 1.95 9.89 3.82 5569 3300002116 

Prairie 2011 2 1.54 7.55 2.94 3021 3300001701 

Prairie 2012 2 1.53 7.65 2.94 2831 3300001702 

Prairie 2010 3 1.79 8.97 3.52 4187 3300002107 

Prairie 2011 3 1.57 7.75 2.98 2977 3300001704 

Prairie 2012 3 1.28 6.14 2.41 2427 3300001690 

Prairie 2010 4 1.61 7.91 3.23 3110 3300002106 

Prairie 2011 4 1.61 7.99 3.11 3136 3300001705 

Prairie 2012 4 1.32 6.48 2.54 2420 3300001745 

Prairie 2010 5 1.90 9.47 3.65 5701 3300002114 

Prairie 2011 5 1.51 7.52 2.88 3050 3300001699 

Prairie 2012 5 1.47 7.19 2.77 2802 3300001747 

Total 

  

48.28 239.43 94.29 119640 

 Maximum 

  

1.27 6.14 2.41 8135 

 Minimum 

  

2.02 10.09 4.04 2151 
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Table S1.5 Soil physical and chemical properties, 0-10 cm 

Year System Percent carbon (w/w) Percent nitrogen (w/w) Bulk density (g cm-3) 

2009 Corn 2.35 ± 0.11 n.s. 0.221 ± 0.012 n.s. 1.38 ± 0.01 c 

 

Prairie 2.31 ± 0.10 n.s. 0.212 ± 0.011 n.s. 1.37 ± 0.02 c 

2013 Corn 2.28 ± 0.11 n.s. 0.225 ± 0.011 n.s. 1.23 ± 0.03 b 

  Prairie 2.38 ± 0.10 n.s. 0.228 ± 0.012 n.s. 1.14 ± 0.02 a 

Unpublished data from GR Sanford and RD Jackson. Values are mean ± s.e. and derived from 0-

10 cm soil samples. Unlabeled groups and groups sharing a letter are not significantly different (P 

> 0.05). 
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Table S1.6 Abundances of major bacterial phyla and classes 

 
Amplicon Shotgun F values 

 

Corn Prairie Corn Prairie Method System Interaction 

Gram-positive 0.161 0.171 0.317 0.316 7465 0 21 

  Actinobacteria 0.107 0.113 0.280 0.248 9021 1 108 

  Firmicutes 0.054 0.057 0.036 0.067 36 2 241 

  Other Gram-positives <0.001 <0.001 0.001 0.002 

   
Gram-negative 0.797 0.795 0.639 0.637 7262 0 2 

  Acidobacteria 0.192 0.215 0.124 0.137 2272 2 0 

  Bacteroidetes 0.061 0.063 0.011 0.018 2690 2 58 

  Proteobacteria 0.300 0.273 0.313 0.293 70 6 8 

    α-Proteobacteria 0.136 0.126 0.168 0.154 274 1 0 

    β-Proteobacteria 0.038 0.039 0.051 0.054 219 0 0 

    γ-Proteobacteria 0.077 0.060 0.055 0.045 370 2 2 

    Other Proteobacteria 0.049 0.058 0.055 0.063 

   
  Verrucomicrobia 0.042 0.052 0.044 0.055 9 6 0 

  Other Gram-negatives 0.202 0.192 0.147 0.134 

   Bolded values indicate statistically significant cropping system differences within a sequencing 

methodology (P < 0.05). Amplicon refers to amplicon sequencing of 16S rRNA; shotgun refers to 

shotgun metagenomic sequencing reads annotated as 16S rRNA. Groups comprising > 5% of reads 

for at least one system-method combination F values are drawn from ANOVA of a logistic general 

linear model with terms of sequencing method, cropping system, and their interaction. 
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Figure 1.1 NMDS ordinations of soil microbial communities based on A) PLFA profiling (see Table S1.1 

for list of PLFAs); B) shotgun sequenced functional gene abundances; C) 16S rRNA amplicon sequence 

OTUs; and D) nosZ amplicon clusters. Line patterns link individual plots sampled over successive years. 

Grey areas represent ordination hulls for the two cropping systems. 
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Figure 1.2 Proportion of reads assigned to select bacterial phyla and classes detected in 16S rRNA 

sequences from S) shotgun metagenomic and A) amplicon sequence data. Bars represent arithmetic 

means of five independent samples. Rare taxa are defined as contributing < 5% of the total reads for both 

sequencing types. 
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Figure 1.3 Ratios of biomarkers associated with Gram-negative and Gram-positive phyla. The PLFA 

ratio is based on indicator lipid biomass (see Table S1 for list of PLFAs); DNA-based ratios are derived 

from phylum-level assignments of 16S rRNA gene reads from either shotgun metagenomic (SMG) or 

amplicon sequencing (phylum details in Table S1.6). Values are arithmetic means (± 1 standard error) of 

log2-transformed ratios. Within a method, groups sharing a letter are not significantly different (P > 0.05). 
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Abstract 

Soil microbial communities may provide insights into the drivers of variability in nitrous oxide (N2O) 

emissions from soils. We used elastic net modelling to explore the relationship between cumulative 

annual N2O emissions ins and four microbial biomarker types (membrane lipids, 16S rRNA, nitrous oxide 

reductase (nosZ) genes, and functional genes from shotgun sequencing). We conducted this experiment 

on two ecologically distinct cropping systems, conventionally managed no-tillage corn, and nonfertilized, 

harvested assemblages of tallgrass prairie species, located on a research farm in south-central Wisconsin, 

USA. The elastic net modeling approach reduces the risk of overfitting when performing regression with 

large numbers of predictors through a combination of coefficient shrinkage and term removal and 

employs a mixing parameter (alpha) that regulates the weight given to both components. All biomarkers 

except for membrane lipids formed credible elastic net models with corn system N2O emissions, while 

only 16S rRNA operational taxonomic units (OTUs) did so for the prairie system. Functional genes and 

16S rRNA OTUs captured both interannual and within-year variability in corn system N2O emissions, 

while nosZ OTUs only reflected within-year variability. Models employing 16S rRNA OTUs and 

functional genes, but not those using nosZ OTUs, responded to values of the alpha parameter. Individual 

biomarkers identified through this modelling approach are unlikely to reflect microbial causes of 

variability in N2O emissions, but may instead indicate microbial taxa that are sensitive to environmental 

conditions relevant to N2O production. With appropriate knowledge of organismal level physiology and 

ecology, this approach may provide insight into overlooked environmental conditions that drive 

variability in N2O emissions.   
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2.1 Introduction 

The production of nitrous oxide (N2O) from soils is one of the key mechanisms by which the agricultural 

sector in the United States contributes to global climate change (U.S. Environmental Protection Agency, 

2014). Multiple biotic and abiotic factors influence rates of N2O production. Microbially-mediated 

processes, notably nitrification and denitrification, are the ultimate source of N2O production in soils 

(Braker and Conrad, 2011). Abiotic factors such as temperature, oxygen availability, and substrate 

concentrations heavily influence the rate at which these processes occur, and thus are frequently linked to 

N2O flux rates (Hénault et al., 2005). Microbial processes can also reduce availability of inorganic 

nitrogen substrates (Luxhøi et al., 2006) or consume N2O (Cavigelli and Robertson, 2001), further 

complicating matters. As a result, predictive modeling of soil N2O fluxes remains a major challenge (Hu 

et al., 2015; Roelandt et al., 2005). 

 Efforts to understand and model variability in N2O fluxes have largely focused on abiotic factors 

(Hénault et al., 2005), as their relationship to N2O production is clearer and they have historically been 

easier to measure than microbial communities. However, the key abiotic drivers of N2O flux variability 

differ among environments (Dechow and Freibauer, 2011), limiting the scope inference that can be drawn 

from purely abiotic data. Incorporating soil microbial information should, in principle, lead to models that 

are more accurate and can be applied over a broader range of environments. Some studies link microbial 

communities to processes underlying N2O production (Harter et al., 2014; Morales et al., 2010; Németh et 

al., 2014), but microbial data do not necessarily improve model performance (Graham et al., 2014). This 

is likely part of the broader issue with relating environmental factors and processes: relationships are clear 

and straightforward only when the factor of interest heavily constrains the process, while constraint by 

other factors obscures any relationship (Hiddink and Kaiser, 2005). Soil N2O emissions may be primarily 

related to proximal environmental controls except in cases where the soil microbial community’s 

functional capacity becomes limiting (Braker and Conrad, 2011; Wallenstein et al., 2006). 

Although microbes are primarily conceptualized and interpreted as causal agents, they may also 

serve as sensitive indicators of environmental factors influencing N2O production. Soil microbial 
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communities contain substantial genetic and functional diversity (Torsvik and Øvreås, 2002). Soil 

microbes experience the small-scale heterogeneity of soil, which may be reflected by community 

compositions with a nuance that would be lost to standard soil monitoring techniques. Microbiota could 

serve as sensitive, integrative biomarkers of environmental health (Ritz et al., 2009; Schloter et al., 2003). 

Ecological indicators can be useful for informing management even if they cannot be directly linked to 

underlying drivers or processes (Contamin and Ellison, 2009). Overall microbial community patterns, 

such as indices created from principal components analysis (PCA) axes, may relate to ecological 

processes in ways that the abundance of individual taxa or other markers would not (Balser and Firestone, 

2005). We may be able to gain insights into soil N2O dynamics by focusing on the organisms most 

directly involved in its production, but there is also much we can learn from organisms that are highly 

responsive to environmental factors influencing N2O production. 

 In this study, we combined previously-published data on N2O emissions (Oates et al., 2016) and 

soil microbial community compositions (Duncan et al., 2016) from a bioenergy feedstock cropping 

systems study. We focused on the two most ecologically dissimilar systems: a corn (Zea mays L.) 

monoculture under conventional no-till management and an annually-harvested assemblage of native 

prairie species receiving no agronomic inputs (Sanford et al., 2016). From 2009 to 2011, the corn system 

emitted considerably more N2O on an annual basis, reflecting the greater nitrogen inputs it received and 

the reduced efficiency with which the plant and microbial components of the system immobilized and 

cycled nitrogen (Oates et al., 2016). Daily N2O fluxes in the corn system could be reasonably well 

modeled from soil temperature, moisture, and concentrations of NO3
- and NH4

+, while fluxes from the 

prairie system showed no relationship to these environmental factors. Soil microbial community 

membrane lipid profiles, taxonomies of 16S rRNA and the nitrous oxide reductase (nosZ ) gene, and 

functional gene profiles differed starkly between the two systems (Duncan et al., 2016). Our objective 

with the present study was to explore whether differences in individual microbial biomarkers correlated to 

cumulative annual N2O fluxes.  

 



41 
 

 

2.2 Materials and methods 

2.2.1 Site description and sampling 

This experiment was conducted on the Bioenergy Cropping Systems Experiment (BCSE) at the 

University of Wisconsin-Madison Arlington Agricultural Research Station (43° 17' 45" N, 89° 22' 48" W, 

315 m a.s.l.) described in detail by Sanford et al. (2016). The site is on highly productive Plano silt-loam 

soils (Fine-silty, Mixed, Superactive, Mesic Typic Argiudolls) and from 1981 to 2010 experienced mean 

annual precipitation of 869 mm and mean annual air temperature minima and maxima of -14.6 and 

27.6°C. The BCSE consisted of eight potential bioenergy feedstock cropping systems grown in 27 × 43-m 

(0.12 ha) plots, arranged in a randomized complete block design with five replicates. The corn system 

received no-tillage management, with nutrient (NPK) applications based on University of Wisconsin 

Extension nutrient recommendations (Laboski et al., 2012) and annual soil tests. The prairie system was 

an assemblage of species indigenous to the North American tallgrass prairie (listed in Oates et al., 2016) 

receiving no nutrient inputs or agronomic management aside from an annual post-senescence harvest. 

Prior to establishment of the BCSE in 2008, the site had been in agricultural production, primarily corn, 

soybean (Glycine max L.) and alfalfa (Medicago sativa L.). The blocking structure accounted for 

differences in prior land use (Sanford et al., 2016). 

Soil sampling for microbial community characterization was conducted in mid-August from 2010 

to 2012. Soils were sampled to 15 cm (3.7 cm diameter) matching the depth of annual agronomic soil 

tests. All five replicates were sampled, with five cores taken in a staggered transect from each plot, and 

homogenized to produce a single composite sample per plot. We sampled soils for microbial community 

characterization in mid-August from 2010 to 2012. We sampled to a depth of 15 cm to match the 

sampling depth for routine agronomic measurements taken at the site. For each plot, we took 5 cores in a 

staggered transect and homogenized them to produce a single composite sample per plot. 

2.2.2 Calculating N2O emissions 

We reported full details on N2O emissions measurement and calculation in Oates et al. (2016). Briefly, 

N2O fluxes were measured using static chambers with an effective headspace volume of ~ 10 L (17 cm 
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height) and an insertion depth of 5 cm. Measurements were taken twice monthly throughout the year, 

except when soil temperatures were < 0°C, with additional sampling following fertilization and heavy 

rainfall events. Daily flux measurements were aggregated by linear interpolation to estimate calendar-year 

N2O emissions. Emissions were log-transformed prior to analysis to mitigate over-dispersion. 

2.2.3 Microbial community characterization 

We reported full details for biomarker extraction, sequence analysis, and repository locations for raw data 

in Duncan et al. (2016). For membrane lipid characterization, we employed a combined phospholipid 

fatty acid and fatty acid methyl ester extraction method (Balser and Firestone, 2005; Kao-Kniffin and 

Balser, 2007) with fatty acid identification using MIDI's EUKARY method database. Fatty acids with 

carbon chain lengths ≥20 were considered plant-derived and excluded from analysis. 

Environmental DNA was extracted from 1 g soil samples using SDS, phenol, and bead beating 

for cell lysis, phenol-chloroform extraction, and precipitation in sodium acetate-ispopropanol (Stevenson 

and Weimer, 2007), with subsequent use of a Power Soil Cleanup Kit (Mo Bio Laboratories, Carlsbad, 

CA) following manufacturer instructions with the optional ethanol rinse. 

Amplicon sequencing of 16S rRNA and nosZ employed a Roche 454 GS Junior Titanium 

sequencer. We used primers described by de Oliveira (2013) to target the V6-V8 region of the 16S 

subunit and the nosZF (Kloos et al., 2001) and nosZ1622R (Throbäck et al., 2004) primers to target the 

catalytic subunit of nosZ. Processing of 16S rRNA reads was done with mothur v 1.33.3 (Schloss et al., 

2009) with a 200-bp length cutoff, alignment against the SILVA reference database (Pruesse et al., 2007) 

and OTU definition at 95% sequence identity. Following quality filtration in mothur, nosZ amplicons 

were analyzed using the Functional Gene Pipeline (Fish et al., 2013): translation with Framebot (Wang et 

al., 2013), alignment with Aligner (Cole et al., 2014), and clustering with mcClust (Fish et al., 2013) with 

OTU definition at 90% amino acid sequence similarity. 

 The Department of Energy Joint Genome Institute (JGI) conducted shotgun sequencing of 

environmental DNA using the Illumina HiSeq Platform with paired-end 150-bp reads and multiplexing 12 

samples per lane. Assembly and annotation were carried out through the standard JGI pipeline, using the 
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updated clusters of orthologous groups (COGs) database for functional gene annotation (Galperin et al., 

2015; Tatusov et al., 2003). 

2.2.4 Statistical analyses 

Analyses were conducted in the R statistical environment (v. 3.3.0, R Core Team, 2016). N2O emissions 

were analyzed with the ‘lmer’ function in the lme4 package (v1.1-12, Bates et al., 2015), with block as a 

random effect. Principal components analysis (PCA) was calculated with the ‘rda’ function in the vegan 

package (v2.3-5 Oksanen et al., 2013) using raw values for lipid and functional gene data, and square root 

transformations for amplicon abundances (following Duncan et al., 2016).  

We used regularization to correlate log-transformed N2O fluxes to individual microbial 

community biomarkers. This approach imposes a penalty during model fitting to achieve a sparse solution 

from a large number of potential predictor terms, attempting to optimize the tradeoff between predictive 

power and model bias (Zou and Hastie, 2005). Two forms of regularization are ridge regression, which 

retains all terms but greatly reduces coefficient magnitude, and the lasso, which simultaneously drops 

terms while selectively reducing their coefficients. We used elastic net modeling, which hybridizes the 

two methods by using a mixing parameter (‘alpha’ in glmnet) to weight the combined penalty term 

toward either ridge regression or the lasso, as implemented by the glmnet package (v2.0-5, Friedman et 

al., 2010). To identify the appropriate weight for the combined penalty term (‘lambda’ in glmnet), we 

used leave-one-out cross validation with the ‘cv.glmnet’ function. This function calculates cross-validated 

error across the full range of lambda values; we selected the most stringent penalty term within one 

standard error of the term that gave the smallest error (‘lambda.1se’ in glmnet) for evaluating model terms 

and fit. Model strength was evaluated using the ratio of explained to null deviance (‘dev.ratio’ in glmnet). 

To evaluate the strength of these deviance ratios, we generated distributions of deviance ratios from 

permuted datasets, permuting flux values within year and running the data through the procedure outlined 

above.  

 We tested for correlations using individual microbial biomarkers (microbial lipid biomass, 16S 

rRNA and nosZ amplicon OTU abundances, and COG-annotated shotgun sequencing read abundances). 
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We tested the effect of variable selection stringency by varying the alpha parameter from 1.0 (lasso 

method) to 0.5 (equal weighting), selecting the lower bound based on Helbling et al. (2015) and a need to 

avoid excessive variable retention. To remove rare biomarkers that formed binary (presence-absence) 

rather than abundance gradients, we excluded any marker that was not present in at least one replicate in 

all study years.  

2.3 Results 

2.3.1 Sources of variation in N2O emissions 

Aggregate annual N2O emissions were substantially higher from the corn system than the prairie system 

(Fig. 2.1). Annual mean N2O emissions differed only between 2010 and 2011 in corn, while there were no 

statistically significant interannual differences in the prairie system (Fig. 2.1).  

Emissions within cropping systems differed substantially among years, although these differences were 

not statistically significant in the prairie system, with rank order for years differing between systems (Fig. 

2.1). We tested how elastic net modeling represented this interannual variability with models that had 

year as the only factor. Across all alpha levels, the model of the corn system retained a term 

distinguishing 2011 from 2010, with a deviance ratio of ~0.3 (i.e. explaining approximately 30% of 

deviance in aggregate emissions). In the prairie, by contrast, the year variable was dropped, leaving only a 

null model. Consecutive-year fluxes from individual plots were weakly correlated in the corn system 

(Pearson r = 0.21 for 2010-11 and 0.47 for 2011-12), but more strongly correlated in the prairie (r = 0.69 

for 2010-11 and -0.63 for 2011-12). 

 System-level differences in N2O emissions were matched by system-level differences detected by 

all four microbial biomarker types (Duncan et al., 2016). This risked effectively creating a two-point 

regression (e.g. Morales et al., 2010), providing little information beyond system-level differences. To 

avoid this, we analyzed each system separately, thus focusing on biomarker correlations to within-system 

variability. We analyzed years together, as interannual differences were less consistent than those 

between systems. However, we included terms for years as potential model predictors.  
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2.3.2 Correlation of N2O emissions to microbial biomarkers 

In the corn system, N2O emissions could be correlated to all four microbial community biomarkers used, 

while in the prairie system only 16S rRNA OTUs produced viable models (Fig. 2.2). We explore 

individual marker types in detail below. Overall, DNA-based biomarkers led to models with greater 

explanatory power. The alpha parameter, which modulated coefficient shrinkage and removal, did not 

affect all measures equally, as is described below. Across alpha levels, models fell within the 85th-95th 

percentiles of deviance ratios achieved with permuted data. Thus, the explanatory power of these models 

was within the range of what was observed when microbial and aggregate emissions data were paired 

within year, albeit at the upper end of that range.  

2.3.2.1 Membrane lipids 

Microbial lipids generated the weakest models, producing deviance ratios that were lower than those 

obtained using year as the sole factor (see Section 3.1) and that fell well within the range of values 

obtained from permuted data (Fig. 2.2). These models retained a term for year, as well as two lipids, 

cis16:1ω7 and 16:1 2OH, which were included for alpha values up to 0.8, above which only 16:1 2OH 

was retained (Table S2.1).  

2.3.2.2 16S rRNA amplicon OTUs 

The strongest model for the corn system, as well as the only non-null models for the prairie system, 

emerged from 16S rRNA amplicon OTU data (Fig. 2.2). Both systems dropped the term for year, but 

there was no overlap in the OTUs retained for each system (Table 2.1). 

 Models of the prairie system retained 2 to 6 OTUs, with the full set of OTUs representing 1.6% 

(s.d. ± 0.4%) of all reads (Table 2.1). Dropping model terms in more lasso-like models did not adversely 

impact model performance. All OTUs were bacterial, with two Acidobacteria, one each of 

Actinobacteria, Chloroflexi, and Gemmatimonadetes, and one unclassified bacterium. Relative abundance 

of the Gemmatimonadetes OTU differed significantly between cropping systems, while three OTUs 

differed in abundance among years (Table 2.1). Interannual differences strongly influenced multivariate 

distributions of these OTUs across both systems. 
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Models of the corn system retained 13 unique OTUs, with 7 to 12 OTUs retained in any one 

model (Table 2.1), representing 2.8% (s.d. ± 1.1%) of all reads. In contrast to the prairie system, alpha 

levels influenced model performance, with more lasso-like models performing better up to alpha = 0.9 but 

with a sharp drop in performance for the fully lasso model (Fig. 2.2). Retained OTUs included three 

representatives from Planctomycetes and Proteobacteria, one from Armatimonadetes, Chloroflexi, and 

Gemmatimonadetes, three unclassified bacteria, and the archaeon Nitrososphaera gargensis (Table S2.2). 

Relative abundances of eight OTUs differed among years, with six showing consistent interannual 

differences for both cropping systems, while four OTUs were differently abundant between cropping 

systems. Cropping system and year separately and significantly influenced overall abundance patterns for 

retained OTUs retained in the corn system. 

2.3.2.3 nosZ amplicon OTUs 

In the corn system, amplicons of the nitrous oxide reductase gene nosZ resulted in models nearly as 

effective as those from 16S rRNA (Fig. 2.2). Alpha levels had almost no effect on these models, with 

only one of eight retained OTUs dropping out (Table 2.2). In contrast to the 16S rRNA models, nosZ 

amplicon models retained the term for year. Non-null models could still be constructed without the year 

term, but deviance ratios dropped to ~0.3 at all alpha levels. The cumulative abundance of retained OTUs 

varied substantially among samples, from 1.2 to 8.0% of all nosZ amplicon reads. All but two OTUs were 

negatively correlated to N2O emissions; the two exceptions were present in the fewest samples and had 

the lowest relative abundance. Six OTUs most closely resembled uncultured bacteria sequenced from 

soils. The closest cultured homologs for five OTUs were from the family Rhizobiales, with another two 

OTUs from other Alphaproteobacteria. The remaining OTU matched a Betaproteobacteria of the 

Achromobacter genus and was one of the two that were positively correlated to N2O emissions (Table 

S2.3). Relative abundances of two OTUs differed significantly among cropping systems and none 

differed significantly among years, but overall abundance patterns were influenced by both cropping 

system and year. 

 



47 
 

 

2.3.2.4 Functional gene abundances 

The alpha parameter heavily influenced models built from functional gene profiles (Fig. 2.2). The number 

of retained COGs dropped from 23 at alpha = 0.5 to 6 at alpha = 1.0, with deviance ratios decreasing as 

terms were dropped (Table 2.3). Increasing the alpha parameter also increased the proportion of permuted 

datasets exceeding the deviance ratio of the real model, indicating the greater model explanatory power at 

low alpha values was not simply an artifact of retaining more terms in the model. Retained COGs covered 

a broad range of functions, with 13 of the 25 COG functional categories represented (Table S2.4). The 

only parameter with obvious links to N2O production was COG3256, annotated as the nitric oxide 

reductase large subunit (norB). This COG was retained only at the lowest alpha level and with a very 

small coefficient. Curiously, average copy number of this COG by itself correlated strongly to N2O 

emissions in the corn system (Fig. S2.1). Average copies per cell differed among years for 15 of the 25 

retained COGs; interannual effects for 11 of these were consistent among years (Table 2.3). Eleven COGs 

differed in average copy number between cropping systems. Overall patterns for retained COGs were 

extremely different among systems and years, with only 34% of multivariate variability occurring within 

these groups.  

2.4 Discussion 

We found that DNA-based measures of soil microbial community composition could explain a large 

proportion of the variability in aggregate annual N2O fluxes in a continuous corn cropping system, but not 

in a restored prairie. We characterized microbial communities using multiple biomarker types to explore 

how different aspects of the microbial community mapped onto variability in soil N2O emissions. The 

four biomarker types resulted in distinct dynamics, most notably in how the balance between ridge 

regression and lasso penalization terms influenced model performance (discussed in Section 4.2). A far 

more important dynamic, however, was the substantial difference in the extent to which the biomarkers 

we used were able to model the corn and prairie cropping systems (discussed in Section 4.1). 

 Before exploring our results at greater depth, we must address the interpretation of individual 

biomarkers retained through the modeling process. We sampled microbial communities in mid-August, 
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while the major N2O flux events that drove interannual variability occurred earlier in the season (Oates et 

al., 2016). We do not know the extent of microbial community turnover that occurred over that time, but 

it could potentially be very high (Schmidt et al., 2007). If turnover was high, then the community we 

sampled might not be indicative of the community present during periods of high N2O flux and thus the 

markers identified would not indicate taxa that drove the N2O production patterns we observed. In this 

scenario, the markers identified through elastic net modeling might instead reflect organisms that were 

particularly responsive to environmental conditions. Further investigation would be needed to determine 

whether soil microbes cause variability in N2O emissions or simply reflect the conditions that drive it. If 

microbes function as sensitive integrators of N2O-relevant environmental conditions, they could facilitate 

investigation of environmental processes that contribute to variability in N2O production. 

2.4.1 Microbial-N2O emission correlations differ fundamentally between corn and prairie 

The most consistent trend in our study was the complete dissimilarity between the corn and prairie 

systems, particularly the difficulty with generating meaningful models for the prairie. This dynamic 

follows prior observations that key abiotic drivers of N2O flux differ among agroecosystems (Dechow and 

Freibauer, 2011; Oates et al., 2016). Fundamental differences in nitrogen cycling and availability likely 

drove this difference in N2O dynamics. The corn system received large pulses of inorganic nitrogen 

which, if combined with high soil moisture and reasonably high temperature, could result in high-

intensity, low-duration flux events (Molodovskaya et al., 2012) during which N2O production might be 

limited by the soil microbial community's collective metabolism. In contrast, the prairie system received 

no exogenous nitrogen, so all inorganic nitrogen availability depended on mineralization of organic 

nitrogen governed by complex soil-plant-microbe interactions (Gliessman, 2007). The focus of N2O 

emissions as responses may complicate the matter. More fundamental ecosystem properties such as 

potential denitrification (Yin et al., 2014) or N2:N2O ratios (Domeignoz-Horta et al., 2015) may respond 

more directly to microbial activity, exploring whether cropping systems differences extend beyond the 

level of nitrogen inputs. 
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 Despite the limitations in our approach, our findings suggest interesting and potentially 

fundamental differences in the nitrogen cycling processes underlying N2O emissions variability in the two 

systems. Both systems produced workable models using 16S rRNA OTUs, allowing us to infer coarse 

patterns in nitrogen cycling from the taxonomic identity of retained OTUs. Variability in N2O emissions  

in the prairie system appeared heavily linked to growth conditions benefitting certain denitrifying taxa, as 

all retained OTUs with taxonomic information were potential denitrifiers. Contrast this to the corn 

system, which had its share of denitrifiers but also retained OTUs from organisms potentially capable of 

nitrification and dissimilatory nitrate reduction to ammonia (DNRA). This suggests a more complex 

ecology of nitrogen cycling in the corn system, at least inasmuch as related to N2O production. This 

possibility runs counter to the dominant view of agricultural management, and exogenous nutrient 

addition in particular, as a force that reduces ecological complexity in agroecosystems (Cassman et al., 

2002; Gliessman, 2007), and illustrates how microbial indicators may inform more nuanced views of 

ecosystem function. 

2.4.2 Interpreting individual biomarker predictors 

The three biomarker types that generated reasonable models for the corn system differed in their retention 

of an explicit term for interannual differences and in their response to the mixing parameter alpha. In both 

cases, the 16S rRNA OTUs and COGs behaved differently from nosZ OTUs. This is perhaps 

unsurprising, as prior studies show correlations at the community level between compositional similarity 

and functional gene abundances patterns (Duncan et al., 2016; Fierer et al., 2012). Moreover, the nosZ 

amplicons captured a much narrower subset of the microbial community than the other two biomarker 

types, ignoring denitrifiers lacking the nosZ gene (Philippot et al., 2011) as well as those possessing 

atypical forms of the gene (Orellana et al., 2014). This did not, however, prevent generation of reasonably 

good models from nosZ OTU data. In contrast, lipid membrane profiles failed to generate credible 

correlations. This was surprising, given the greater responsiveness of lipid data to environmental 

influences (Duncan et al., 2016; Liang et al., 2016). The limited phylogenetic specificity of this biomarker 
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likely restricted it to reflecting broad impacts on the microbial community, while the environmental 

drivers that influenced N2O production appear to be visible with more narrowly-defined groups. 

 Both the 16S rRNA OTUs and COGs captured interannual variability without needing to use year 

as a discrete term. These biomarker types exhibited greater overall interannual variability in this system 

(Duncan et al., 2016), suggesting taxonomic composition and functional gene profiles respond to 

interannual variability. Many, but not all, markers retained in the models differed significantly among 

years. However, partitioning interannual effects among multiple terms proved more efficient than 

representing them with a single term, strongly suggesting these factors were not simply proxies for 

interannual variability. This contrasts sharply with the nosZ OTU model, which needed to retain an 

explicit term for interannual variability and for which retained terms did not differ in abundance among 

years. The retained nosZ OTUs thus reflected within-year variability in corn N2O emissions, rather than 

interannual effects.  

 Biomarker types also differed in how their model performance responded to alpha values, which 

determined how strongly the elastic net penalization terms resembled those from either ridge regression or 

the lasso. A key dynamic to keep in mind is the lasso's tendency to retain single exemplars from groups of 

correlated terms while discarding the rest, in contrast to the greater inclusion of terms with more ridge 

regression-like penalization (Zou and Hastie, 2005). Terms retained at high alpha values represented 

largely independent gradients of community composition, and may thus have reflected similarly 

independent environmental factors. This further complicates interpretation of individual terms, as it is 

unclear whether they reflect a unique dynamic or are simply the best example of a constellation of 

similarly-behaving terms. Changes in term retention and their effect on model performance across 

multiple alpha values may help with interpretation. With nosZ OTUs, alpha levels barely influenced 

model structure or performance. The COGs were completely different, as increasing alpha values sharply 

decreased both the number of terms and model performance. The 16S rRNA OTUs provide perhaps the 

most interesting case. Removing terms improved model performance until the last alpha value, where 

impactful terms were removed and model performance dropped sharply. Overall, this approach suggests 
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that environmental gradients driving variability in corn system N2O production can be approximated by 

abundances f relatively few N2O reducers or bacterial taxa. Encompassing these gradients with COG 

abundances appears to require a larger number of weakly-related terms. This may reflect a lack of 

specificity in COG data, as multiple taxa with distinct ecological niches may all contribute to the 

abundance of a specific COG. 

 This study serves primarily to determine that some linkage exists between microbial community 

composition and variability in N2O production. Exploring that linkage in detail requires detailed 

knowledge of the physiology and ecology of the taxa underlying that linkage. Generating this information 

lies beyond the scope of this study, but it is possible to illustrate how this approach might work using taxa 

from the 16S rRNA models. One of the OTUs from the corn system shared strong homology with 

Nitrososphaera gargensis, an ammonia oxidizing Archaea (AOA) with some flexibility in its ammonia 

sources (Spang et al., 2012). As a group, AOA are frequently less responsive than their bacterial 

counterparts to cropping system and fertilizer effects, but function at lower ammonia concentrations 

(Carey et al., 2016). A more ecologically-responsive AOA might serve to track nitrification-relevant 

ammonia or pH values. The prairie retained OTUs for Acidobacteria and Actinobacteria, which are 

frequently capable of N2O production but not reduction (Ahn et al., 2014; Palmer and Horn, 2012; Shoun 

et al., 1998; Ward et al., 2009). One of the Acidobacteria identified in the prairie (OTU00021, identified 

as iii1-8) increases in abundance with increasing soil pH (Kim et al., 2014). Soil pH exerts strong, if 

frequently overlooked, controls over denitrification (Liu et al., 2013; Russenes et al., 2016) and such pH-

sensitive organisms may reflect biologically-relevant trends in that regard. Far more organismal 

knowledge is clearly needed to fully interpret patterns like those we observed, but this approach may be 

useful to generate hypotheses and identify organisms for further, focused study. 

2.5 Conclusions 

We used elastic net modeling to correlate aggregate annual soil N2O fluxes from two ecologically distinct 

bioenergy cropping systems to multiple biomarkers commonly used to characterize microbial 

communities. Strong relationships were observed for DNA-based biomarkers in the corn system, while 
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only a weak relationship with 16S rRNA OTUs was observed in the prairie system, suggesting both that 

biomarker types reflected different functional aspects of microbial community composition and that the 

linkage between microbial communities and N2O emissions differed between the two cropping systems. 

The extent to which elastic net models employed lasso-like predilections for eliminating terms influenced 

the performance of models using 16S rRNA OTUs and COG-annotated functional genes, but barely 

impacted performance of models using nosZ amplicons. The biomarkers identified through this approach 

appear to be best interpreted as indirect indicators of environmental conditions driving variability in N2O 

production, rather than as signs of microbial agents directly causing that variability. While this approach 

cannot directly link microbial community composition to N2O production in soils, it may provide insights 

into environmental controls of the process which might not be detectable through other methods. 
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Table 2.1 16S rRNA OTUs correlated to soil N2O emissions through elastic net modeling 

System Phylum Biomarker 

Elastic net coefficients  

(by alpha value)  

Incidence 

Abundance  

(% of total reads) 

Variance partitioning 

0.5 0.75 1.0 System Year S x Y 

Corn Armatimonadetes OTU0162 -85.8 -93.1 -71.4 12 0.14 ± 0.08 0.01 0.37 0.02 

 
Chloroflexi OTU0224 6.5 

  
14 0.09 ± 0.04 0.22 0.20 0.02 

 
Crenarchaeota OTU0476 

 
-66.3 

 
8 0.04 ± 0.02 0.02 0.01 0.04 

 
Gemmatimonadetes OTU0354 -228.1 -206.6 -217.0 10 0.05 ± 0.03 0.00 0.03 0.03 

 
Planctomycetes OTU0114 -2.1 

  
14 0.16 ± 0.11 0.03 0.23 0.02 

  
OTU0152 27.8 

  
15 0.14 ± 0.09 0.11 0.31 0.11 

  
OTU0235 77.5 99.4 90.9 11 0.15 ± 0.12 0.26 0.26 0.20 

 
Proteobacteria OTU0016 4.8 4.8 

 
15 1.12 ± 0.56 0.03 0.39 0.04 

  
OTU0032 24.2 31.4 30.1 15 0.62 ± 0.56 0.02 0.33 0.17 

  
OTU0098 -119.5 -167.2 -138.2 15 0.23 ± 0.13 0.07 0.62 0.03 

 
Unclassified OTU0164 -119.7 -188.4 -83.1 14 0.11 ± 0.06 0.00 0.09 0.01 

  
OTU0245 -140.0 -166.0 -80.7 9 0.07 ± 0.04 0.15 0.01 0.09 

  
OTU0430 -41.7 -28.4 

 
8 0.04 ± 0.02 0.02 0.12 0.04 

    Total         2.76 ± 1.10 0.10 0.26 0.05 

Prairie Acidobacteria OTU0021 7.8 4.8 3.3 15 0.86 ± 0.27 0.03 0.22 0.05 

 
 

OTU0120 90.6 87.9 93.2 15 0.17 ± 0.07 0.09 0.20 0.03 

 Actinobacteria OTU0383 8.7 
  

10 0.04 ± 0.03 0.06 0.05 0.03 

 Chloroflexi OTU0091 23.9 18.2 16.1 15 0.20 ± 0.14 0.00 0.24 0.17 

 Gemmatimonadetes OTU0043 6.3 1.7 
 

15 0.33 ± 0.11 0.28 0.11 0.08 

 Unclassified OTU0393 -391.2 -406.1 -438.1 8 0.03 ± 0.03 0.00 0.14 0.01 

    Total         1.63 + 0.45 0.06 0.17 0.05 

Incidences and abundances were calculated within cropping systems, with abundance presented as mean ± sd. Variance ratios are the proportion 

of total variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple comparisons). Coefficients over broader alpha 

values and full taxonomic information are presented in Table S2.2. 
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Table 2.2 nosZ OTUs correlated to corn system soil N2O emissions through elastic net modeling 

Family Biomarker 

Elastic net coefficients  

(by alpha value)  

Incidence 

Abundance  

(% of total reads) 

Variance partitioning 

0.50 0.75 1.00 System Year S × Y 

 
Year (2011) -0.3 -0.4 -0.5 

     
Burkholderiales OTU0027 181.3 217.1 258.4 11 0.17 ± 0.07 0 0.18 0.01 

Rhizobiales OTU0010 -29.1 -24.8 -20.8 14 0.40 ± 0.21 0.07 0 0.15 

 
OTU0021 -5.3 -6.2 -10.9 15 1.19 ± 0.83 0.23 0.02 0.03 

 
OTU0040 -6.0 

  
15 0.57 ± 0.30 0.01 0.03 0 

 
OTU0074 -18.6 -13.1 -7.1 14 0.49 ± 0.23 0.48 0.1 0.03 

 
OTU0085 -7.9 -4.9 -2.8 15 0.86 ± 0.58 0.02 0.17 0.06 

Rhodobacterales OTU0165 148.3 168.0 159.7 12 0.11 ± 0.06 0.01 0.01 0.08 

Rhodospirillales OTU0158 -38.0 -36.5 -27.8 14 0.18 ± 0.19 0.03 0.12 0.04 

 
Total 

    
3.83 ± 1.64 0.15 0.12 0.07 

Family is for the closest BLASTX homolog with taxonomic identity; the closest homolog to most OTUs was uncultured. Incidences and 

abundances were calculated for the corn system, with abundance presented as mean ± sd. Variance ratios are the proportion of total 

variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple comparisons). Coefficients over broader alpha 

values and full taxonomic information are presented in Table S2.3. 
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Table 2.3 COGs correlated to corn system soil N2O emissions through elastic net modeling  

Functional category Biomarker 

Elastic net coefficients  

(by alpha value) Abundance  

(copies cell-1) 

Variance partitioning 

0.50 0.75 1.00 System Year S × Y 

Translation, ribosomal structure and biogenesis COG0013 0.08 
  

0.99 ± 0.02 0.00 0.50 0.04 

COG0220 0.9 0.3 
 

0.50 ± 0.03 0.08 0.48 0.14 

COG1576 0.5 0.0 
 

0.36 ± 0.04 0.03 0.55 0.03 

COG3642 -1.0 -0.1 
 

0.22 ± 0.02 0.37 0.23 0.02 

Signal transduction COG2114 -0.1 -0.1 
 

6.79 ± 0.52 0.31 0.32 0.11 

COG2197 -0.004 
  

12.10 ± 0.40 0.26 0.34 0.04 

COG2206 -0.04 
  

1.68 ± 0.08 0.00 0.11 0.26 

COG5170 -1.7 
  

0.01 ± 0.00 0.25 0.25 0.03 

Cell wall/membrane biogenesis COG3065 2.0 2.4 1.9 0.07 ± 0.02 0.00 0.40 0.03 

Energy production and conversion COG0374 -4.4 -4.4 -2.7 0.14 ± 0.01 0.10 0.03 0.25 

COG1141 -0.8 -0.7 -0.1 0.55 ± 0.07 0.10 0.35 0.06 

Nucleotide transport and metabolism COG0563 -1.1 -0.9  1.38 ± 0.05 0.02 0.03 0.13 

Carbohydrate transport and metabolism COG0120 2.3 2.7 2.7 0.38 ± 0.03 0.00 0.36 0.04 

Coenzyme transport and metabolism COG3165 1.9 1.2  0.05 ± 0.01 0.08 0.12 0.02 

Lipid transport and metabolism COG1260 -1.0   0.70 ± 0.02 0.06 0.12 0.06 

Inorganic ion transport and metabolism COG1055 2.6 3.1 2.4 0.30 ± 0.03 0.00 0.32 0.07 

COG1393 0.02   0.60 ± 0.08 0.00 0.50 0.05 

COG3256 0.0002   0.24 ± 0.03 0.05 0.60 0.10 

Secondary metabolite biosynthesis and transport COG2312 1.6 0.8  0.27 ± 0.02 0.14 0.22 0.00 

General prediction COG3694 -0.6 -0.2  0.26 ± 0.03 0.20 0.46 0.01 

COG4589 -0.6   0.29 ± 0.02 0.30 0.02 0.14 

Function unknown COG0700 -5.9 -9.0 -13.6 0.11 ± 0.01 0.14 0.12 0.12 

COG1315 -3.9   0.01 ± 0.00 0.07 0.10 0.06 

Copies per cell were estimated by normalizing by COG model length, then normalizing against 37 single-copy housekeeping genes, presented 

as mean ± sd. Variance ratios are the proportion of total variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple 

comparisons). Coefficients over broader alpha values and CG names are presented in Table S2.4. 
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Table S2.1 Coefficients and taxonomic information for microbial membrane lipids correlated to soil N2O emissions in prairie samples through 

elastic net modeling 

  
alpha values 

Incidence 

Abundance 

(mol%) 

Biological 

interpretation System Biomarker 0.5 0.6 0.7 0.8 0.9 1.0 

Corn Year (2011) -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 

   

 

16:1 2OH 89.6 93.4 87.8 73.6 55.0 11.6 13 1.2 + 0.5 None 

  16:1ω7c 10.0 9.0 6.7 3.2     15 6.1 + 2.1 Gram-negative bacteria 

Lipid inerpretations based on Balser et al., 2000, referenced in manuscript. Incidence and abundance are calculated for corn 

samples, abundance is a percentage of all microbial lipids, presented as mean ± sd. 
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Table S2.2 Taxonomic information for 16S rRNA OTUs correlated to soil N2O emissions in prairie samples through elastic net modeling 

System Marker Kingdom Phylum Class Order 

Corn Otu00016 Bacteria(100) Proteobacteria(100) Betaproteobacteria(100) unclassified(100) 

 

Otu00032 Bacteria(100) Proteobacteria(100) Betaproteobacteria(100) unclassified 

 

Otu00098 Bacteria(100) Proteobacteria(100) Gammaproteobacteria(100) Legionellales(100) 

 

Otu00114 Bacteria(100) Planctomycetes(100) Planctomycea(100) Pirellulales(100) 

 

Otu00152 Bacteria(100) Planctomycetes(100) Planctomycea(100) Gemmatales(100) 

 

Otu00162 Bacteria(100) Armatimonadetes(100) CH21(100) unclassified(100) 

 

Otu00164 Bacteria(100) unclassified unclassified unclassified 

 

Otu00224 Bacteria(100) Chloroflexi(100) Thermomicrobia(100) Sphaerobacterales(100) 

 

Otu00235 Bacteria(100) Planctomycetes(100) Planctomycea(100) Gemmatales(100) 

 

Otu00245 Bacteria(100) unclassified unclassified unclassified 

 

Otu00354 Bacteria(100) Gemmatimonadetes(98) Gemmatimonadetes(98) Gemmatimonadales(98) 

 

Otu00430 Bacteria(100) unclassified(92) unclassified(92) unclassified(92) 

 

Otu00476 Archaea(100) Crenarchaeota(100) Thaumarchaeota(100) Nitrososphaerales(100) 

Prairie Otu00021 Bacteria(100) Acidobacteria(100) Holophagae(99) DS-18(99) 

 

Otu00043 Bacteria(100) Gemmatimonadetes(100) Gemmatimonadetes(100) Gemmatimonadales(100) 

 

Otu00091 Bacteria(100) Chloroflexi(99) Anaerolineae(89) unclassified(89) 

 

Otu00120 Bacteria(100) Acidobacteria(98) Acidobacteria(98) Acidobacteriales(98) 

 

Otu00383 Bacteria(100) Actinobacteria(100) Actinobacteria(100) 0319-7L14(100) 

 

Otu00393 Bacteria(100) unclassified(90) unclassified(90) unclassified(90) 
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Table S2.3 Taxonomic information for nosZ OTUs correlated to corn system soil N2O emissions through elastic net modeling 

Biomarker 

Representative 

sequnce ID 

Closest 

BLASTX hit in 

NCBI with 

taxonomic 

information 

Percent 

identity Class Family Species 

OTU0010 IC3ZW2301CM10T DE0RYD0K015 97% Alphaproteobacteria Rhizobiales Bradyrhizobiaceae bacterium  

OTU0021 ICWNDJH01AL55P DE0Y2Y8C01R 100% Alphaproteobacteria Rhizobiales Bradyrhizobium japonicum 

OTU0027 ICWNDJH01DE30O DE17YZR1015  76% Betaproteobacteria Burkholderiales Achromobacter sp. 

OTU0040 ICWNDJH01BKTTL DEJ6DMTU014 85% Alphaproteobacteria Rhizobiales Bradyrhzizobium 

oligotrophicum 

OTU0074 IC3ZW2301DRKQO EE6J5360014 93% Alphaproteobacteria Rhizobiales Microvirga vignae 

OTU0085 ICWNDJH01B3F0V DEJ7NTGX014 93% Alphaproteobacteria Rhizobiales Sinorhizobium meliloti 

OTU0158 ICWNDJH01BCN0T DEJ8T0WZ014  98% Alphaproteobacteria Rhodospirillales Skermanella aerolata 

OTU0165 IC3ZW2301DFH6S DEJN1UYY01R 78% Alphaproteobacteria Rhodobacterales Paracoccus sp 

 

  

http://www.ncbi.nlm.nih.gov/protein/255519437?report=genbank&log$=prottop&blast_rank=28&RID=DE0RYD0K015
http://www.ncbi.nlm.nih.gov/protein/654674653?report=genbank&log$=prottop&blast_rank=1&RID=DE0Y2Y8C01R
http://www.ncbi.nlm.nih.gov/protein/336092345?report=genbank&log$=prottop&blast_rank=94&RID=DE17YZR1015
http://www.ncbi.nlm.nih.gov/protein/505483095?report=genbank&log$=prottop&blast_rank=10&RID=DEJ6DMTU014
http://www.ncbi.nlm.nih.gov/protein/827103812?report=genbank&log$=prottop&blast_rank=1&RID=EE6J5360014
http://www.ncbi.nlm.nih.gov/protein/505055126?report=genbank&log$=prottop&blast_rank=1&RID=DEJ7NTGX014
http://www.ncbi.nlm.nih.gov/protein/764626011?report=genbank&log$=prottop&blast_rank=9&RID=DEJ8T0WZ014
http://www.ncbi.nlm.nih.gov/protein/648463747?report=genbank&log$=prottop&blast_rank=37&RID=DEJN1UYY01R
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Table S2.4 Coefficients and functional information for COGs correlated to corn system soil N2O emissions through elastic net modeling  

Biomarker 

Function 

class COG name 

COG0013 J Alanyl-tRNA synthetase 

COG0120 G Ribose 5-phosphate isomerase 

COG0220 J tRNA G46 methylase TrmB 

COG0374 C Ni,Fe-hydrogenase I large subunit 

COG0563 F Adenylate kinase or related kinase 

COG0700 S Spore maturation protein SpmB (function unknown) 

COG1055 P Na+/H+ antiporter NhaD or related arsenite permease 

COG1141 C Ferredoxin 

COG1260 I Myo-inositol-1-phosphate synthase 

COG1315 S Uncharacterized conserved protein, DUF342 family 

COG1393 P Arsenate reductase and related proteins, glutaredoxin family 

COG1576 J 23S rRNA pseudoU1915 N3-methylase RlmH 

COG2114 T Adenylate cyclase, class 3 

COG2197 T DNA-binding response regulator, NarL/FixJ family, contains REC and HTH 

domains 

COG2206 T HD-GYP domain, c-di-GMP phosphodiesterase class II (or its inactivated 

variant) 

COG2312 Q Erythromycin esterase homolog 

COG3065 M Starvation-inducible outer membrane lipoprotein 

COG3165 H Ubiquinone biosynthesis protein UbiJ, contains SCP2 domain 

COG3256 P Nitric oxide reductase large subunit 

COG3642 J tRNA A-37 threonylcarbamoyl transferase component Bud32 

COG3694 R ABC-type uncharacterized transport system, permease component 

COG4589 R Predicted CDP-diglyceride synthetase/phosphatidate cytidylyltransferase 

COG5170 T Serine/threonine protein phosphatase 2A, regulatory subunit 
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Figure 2.1 Aggregate annual N2O emissions by cropping system and year. Data are presented on a 

logarithmic scale. Groups sharing a letter are not significantly different (P > 0.05 following a Tukey 

multiple comparison adjustment)  
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Figure 2.2 Performance of elastic net models correlating microbial biomarkers to N2O fluxes in corn and 

prairie cropping systems. Points indicate deviance ratios obtained with different weightings of ridge and 

lasso regression (alpha values). Point size indicates the number of terms retained by the model, including 

an intercept. Progressively darker shades of gray indicate deviance ratios for the 95th, 90th, 85th, and 80th 

percentiles for 1000 within-year data permutations. 
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Figure S2.1 Relationship between aggregate N2O emissions and abundance of COG3256 (nitrous oxide 

reductase, norB). 
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Abstract 

Soil microbial communities regulate key nutrient cycles in agricultural systems, making them critical for 

healthy bioenergy feedstock cropping systems. We used functional gene abundance profiles measured 

from shotgun metagenomic sequencing to study how soil microbial communities responded to eight 

bioenergy feedstock cropping systems: continuous corn, miscanthus, hybrid poplar, a mixture of native 

grasses, in addition to both fertilized and nonfertilized switchgrass and restored tallgrass prairie. These 

systems were grown in agronomic trials in south-central Wisconsin (ARL) and southwest Michigan 

(KBS). We sampled ARL annually from 2010 to 2012 and KBS in 2012. Microbial community 

differences existed between sites, but not among years at ARL, and among cropping systems in all cases 

except for 2011 at ARL. Functional gene profile dissimilarities rarely matched ecological differences 

among cropping systems, while relative relationships among cropping shifted over site-years. The corn 

system at ARL had significantly lower average abundances for all function categories considered, 

suggesting smaller average genome sizes, and at both sites exhibited substantial variability in 

denitrification pathway gene abundances. Nitrogen fertilization effects were not apparent in functional 

gene profiles, abundances within function categories, or abundances of denitrification pathway genes. Our 

findings suggest that within-system variability in microbial functional gene abundances outweighs 

systematic cropping system influences.  
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3.1 Introduction 

Soil microbes drive many key ecosystem dynamics, influencing biogeochemical cycles and the 

composition and productivity of plant communities (Schnitzer et al., 2011; van der Heijden et al., 2008; 

Wagg et al., 2014). Microbially-driven dynamics may be particularly important to cropping systems that 

produce biomass feestocks for bioenergy and bioproducts. In contrast to the virtually exclusive focus 

placed on production in conventional grain and forage cropping systems, ecological services and 

sustainability form a core element of the impetus for bioenergy feedstock cropping systems (Landis et al., 

n.d.; Robertson et al., 2008). These systems are valued and evaluated not only for their productivity 

(Sanford et al., 2016), but also for their capacity to provide a number of ecosystem services including 

carbon storage (Gelfand et al., 2011; Zenone et al., 2013), mitigation of greenhouse gas emissions 

(Hudiburg et al., 2015; Oates et al., 2016), and provision of habitat for desirable animal species 

(Robertson et al., 2011, 2012; Werling et al., 2014). Much of the rationale for the sustainability and 

desirability of bioenergy feedstock cropping systems is predicated on their reduced requirements for 

exogenous nutrients, agricultural chemicals, and other management inputs (Dale et al., 2014; Tilman et 

al., 2006). This combination of broader ecological demands and reduced inputs requires greater resilience 

and resource-use efficiency, which in turn relies heavily on the interactions of plants, microbes, and 

management activities (Bardgett and McAlister, 1999).  

 Understanding the forces that shape soil microbial communities is critical for learning how to 

manage them. In principle, ecosystem properties should exert clear directional effects on soil microbial 

community composition. Differences in plant species and variety can select directly for particular taxa 

(Berg and Smalla, 2009; Kowalchuk et al., 2002) or more indirectly influence the selective environment 

via their influence on energy and nutrient cycles (Butler et al., 2003; Pathan et al., 2015). Exogenous 

nutrients, particularly nitrogen, greatly impact particular taxa (Fierer et al., 2012a; Leff et al., 2015). At 

the same time, soil microbial communities can prove exceedingly slow to change, reflecting land use 

legacies more than present conditions (Jangid et al., 2011). Cropping system effects may also be 

dampened or magnified by interannual variability (Smith et al., 2015) or by environmental factors 
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unrelated to cropping system differences (Mao et al., 2013). While high ecological dissimilarity simplifies 

detection of coarse, systematic differences in microbial community composition (Fierer et al., 2012b), 

exploring more subtle, yet significant, differences in composition may require systems with less 

overwhelming ecological differences. 

 The motivation to study microbial community compositions largely presupposes that 

compositional changes translate to changes in ecosystem-level functioning. While fully understanding this 

linkage remains one of the grand challenges of microbial ecology (Torsvik and Øvreås, 2002), there is 

growing appreciation of the functional differences among microbial communities and of how these 

differences may influence ecosystem processes. For example, diversity of organisms capable of reducing 

nitrous oxide (N2O) influences the ratio of N2O:N2 produced during denitrification (Domeignoz-Horta et 

al., 2015). Community composition and function may be more closely linked in processes conducted by 

smaller, less diverse groups of microorganisms (Levine et al., 2011), although aggregate community-level 

differences among ecosystems have also been observed for broader traits, such as microbial growth 

efficiency (Lee and Schmidt, 2014). While this variability in microbial community functional capabilities 

is increasingly represented in process-based models, generation of empirical data on these functions 

remains a major bottleneck (Wieder et al., 2014).  

 Functional gene characterization provides a powerful tool for exploring and predicting 

differences in microbial community capabilities, particularly when information on individual taxa and 

their capabilities is limited. Gene-targeted methods, such as qPCR, allow for determination of the 

abundances of specific genes of interest (e.g. Mao et al., 2013). Even with recent advances in throughput 

(Devonshire et al., 2013), this approach still limits the number of genes that can be analyzed at once. 

Functional gene microarrays (e.g. He et al., 2010) permit simultaneous quantification of large numbers 

genes, but are still limited in scope to sequences sharing substantial homology to pre-defined sets of 

probes. In contrast, shotgun metagenomic sequencing largely avoids dependence on gene targeting; as its 

throughput has increased and its costs have decreased, it is an increasingly attractive alternative for 

characterizing functional gene abundances (Eisen, 2007; Tringe et al., 2005). Shotgun sequencing can 
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identify novel or atypical forms of functional genes which would go undetected by targeted methods 

(Orellana et al., 2014; Sanford et al., 2012). Whole or partial genome reconstruction from metagenomic 

sequence provides considerable information about both the composition of a community and the genetic 

capabilities of its constituents (Tyson et al., 2004). Metagenomic assembly remains a major challenge for 

complex microbial communities, such as those found in agricultural and grassland soils (Howe et al., 

2014), but direct annotation of short reads may suffice to infer differences in microbial community 

function that are consistent with ecological differences among samples (Fierer et al., 2012b; He et al., 

2015). One frequently-used annotation framework is the Clusters of Orthologous Groups (COGs) 

database (Galperin et al., 2015; Tatusov et al., 2003), which identifies genes that are paralogous across 

multiple microbial lineages. One advantage of this framework is that individual COGs are further 

classified into functional categories, making it possible to track changes in the relative importance of 

broad groupings of genetic functions. 

 We explored how different bioenergy feedstock cropping systems influence the functional gene 

profiles of their associated soil microbial communities. Our study was conducted in Bioenergy Cropping 

Systems Experiments (BCSEs) situated Wisconsin and Michigan. We sampled near the end of the 

growing season, from 2010 to 2012 at ARL and in 2012 at KBS. The BCSEs were set up to compare the 

productivity and ecological properties of a diverse array of bioenergy cropping systems differing in their 

perenniality, plant species diversity, and agronomic management intensity (Sanford et al., 2016). These 

systems exhibit considerable differences in their nitrogen cycles, notably in their nitrous oxide emissions 

(Duran et al., 2016; Oates et al., 2016). We previously reported significant differences in microbial 

community taxonomic and functional gene profiles between the two most ecologically dissimilar systems, 

no-tillage continuous corn (Zea mays L.) and a nonfertilzed assemblage of tallgrass prairie species, at the 

Wisconsin BCSE (Duncan et al., 2016). Here, we extend that study, analyzing functional gene profiles 

derived from shotgun metagenomic sequencing for eight cropping systems at both sites. We addressed 

whether functional gene profiles differed systematically among cropping systems, sites, or years and 

whether these patterns differed for groups of genes with related functions.  
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3.2 Methods 

3.2.1 Study design and soil sampling 

The DOE-Great Lakes Bioenergy Research Center’s BCSEs were established in 2008. Both BCSEs 

contained five replicate randomized complete blocks, with 0.12 ha plots (27- × 43-m) managed with 

standard-sized field equipment (full agronomic details in Sanford et al., 2016). We investigated six 

systems: continuous no-tillage corn, monocultures of switchgrass (Panicum virgatum L.), miscanthus 

(Miscanthus × giganteus), and hybrid poplar (Populus nigra × P. maximowiczii), a native grass mix (five 

species), and a restored prairie (assemblage of 18 tallgrass prairie species). Full species lists and variety 

information are presented in Table S1 of Oates et al. (2016). The continuous corn system received annual 

fertilization based on spring soil tests, with an average of 167 kg N ha-1 y-1 (5-14-42 NPK granular starter 

fertilizer and 28-0-0 urea-ammonium nitrate side dress). The poplar received a single nitrogen application 

in 2010 (210 kg N ha-1 as 34-0-0 granular ammonium nitrate). The remaining systems received annual 

fertilization (56 kg N ha-1 as 34-0-0 granular ammonium nitrate) in a single application in the spring. This 

fertilization regime began in 2010 to limit competition from annual weeds while the perennial crops 

established. We sampled from a split-plot fertilization experiment superimposed on the switchgrass and 

restored prairie systems, with a subplot (10- × 43-m) on the western side of the plots receiving a 

contrasting treatment to the main plot. The switchgrass main plots and restored prairie subplots received 

annual fertilization while the restored prairie main plot and switchgrass subplot did not.  

 The Michigan BCSE was established at the Michigan State University W.K. Kellogg Biological 

Research Station (KBS, 42 23'47" N, 85 22'26"W, 288 m.a.s.l.). Soils at KBS were predominantly 

Kalamazoo loam (Fine-Loamy, Mixed, Semiactive, Mesic Typic Hapludalfs). Mean annual temperature 

from 1981 to 2010 was 9.9 °C and mean annual precipitation was 1027 mm (MSCO, 2013). In 2012, the 

only year this site was sampled, precipitation between May and September was significantly below the 

30-year average (Sanford et al., 2016). Prior to BSCE establishment, the previous crop was alfalfa 

(Medicago sativa L.). 
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 The Wisconsin BCSE was established at University of Wisconsin-Madison Arlington 

Agricultural Research Station (ARL, 43 17'45" N, 89 22'48" W, 315 m.a.s.l). Soils at ARL were 

predominantly Plano silt-loam (Fine-Silty, Mixed, Superactive, Mesic Typic Arguidolls). Mean annual 

temperature from 1981 to 2010 was 6.8 °C and mean annual precipitation was 869 mm (NWS, 2013). Of 

the three years sampled, 2010 had above-average precipitation through August, while 2011 and 2012 

were at or below the 30-year average during the growing season (Sanford et al., 2016). Blocking at ARL 

was designed to control for differences in prior land use, as prior to BCSE establishment blocks A1-A3 

were in a corn-soybean (Glycine max L.) rotation while blocks A4-A5 were an alfalfa-orchardgrass 

(Dactylis glomerata L.) hay mixture. The miscanthus system was replanted at ARL in 2010 following 

severe stand loss during the 2008-09 winter. 

 Including subplot treatments, eight total systems were sampled in this study: continuous corn, 

fertilized and unfertilized switchgrass, miscanthus, poplar, native grasses, old field, and fertilized and 

unfertilized prairie. Not all treatments were sampled in all years or at both sites; a full sample list is 

presented in Table S3.1. Soils were sampled 2010-08-24, 2011-08-21, and 2012-08-30 at ARL, and on 

2012-08-27 at KBS. In each plot, five cores (3.7 cm diameter, 15 cm depth) were collected in a staggered 

transect and composited by sieving to 2 mm. Soils were lyophilized and stored frozen at -20 °C.  

3.2.2 DNA extraction and sequencing 

DNA was extracted from soils using an adaptation of the approach developed by Stevenson and Weimer 

(2007) with full details given in Duncan et al. (2016). Soils were ground with liquid nitrogen in a ceramic 

mortar to disrupt aggregates. Cell lysis was achieved by a combination of bead beating (0.1-mm silica 

zirconia beads, 2 × 10 min at room temperature), phenol (500 µl in a total liquid volume of 1550 µl), SDS 

(50 µl) and heat (10 min at 60 °C) in a high salt buffer (100 mM Tris-HCl, 10 mM EDTA, 0.15 M NaCl, 

pH 8.0). Samples were separated by centrifugation (16,000 × g for 10 min), with successive washes with 

500 µl phenol, 500 µl 1:1 phenol:chloroform, and 500 µl chloroform. DNA was precipitated with 3 M 

sodium acetate and isopropanol. All samples were further cleaned with a Power Soil Cleanup Kit (Mo Bio 

Laboratories, Carlsbad CA). 
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 Sequencing was conducted by the DOE Joint Genome Institute using an Illumina HiSeq platform 

(Illumina, San Diego, CA) with 12 samples multiplexed per lane. Reads were assembled using 

SOAPdenovo (v 1.05) and called using FragGenScan (v1.16), prokaryotic GeneMark.hmm (v2.8), 

Metagenome Annotator (v1.0) and Prodigal (v2.5). For this study, we used annotations from the updated 

clusters of orthologous groups (COGs) database (Galperin et al., 2015; Tatusov et al., 2003). Samples 

were submitted for sequencing in three batches, with the first batch containing all continuous corn and 

nonfertilized prairie samples from ARL. Sequencing data are available through the Genomes Online 

Database (https://gold.jgi.doe.gov) under Study ID GS0095510. Project ID numbers and batch 

information for individual samples are given in Table S3.1.  

3.2.3 Statistical analysis 

COG abundances were obtained from the Integrated Microbial Genomes portal 

(https://img.jgi.doe.gov/m/), using coverage-based copy number estimates. Assembly rates were 

extremely low (<1% of reads mapped), thus unassembled reads dominated our analysis, making this 

effectively a direct annotation of short reads. Consequently, we applied the short-read relativization 

approach described by He et al. (2015). COG copy numbers were first divided by their consensus 

sequence length to give coverage per base, then all COGs were divided by the average coverage of a suite 

of universal single-copy housekeeping genes to give an estimate of copy number cell-1 for each COG. 

Housekeeping COGs were excluded from subsequent analyses. Table S3.2 contains information on COG 

consensus lengths, housekeeping gene identity, and function categories. COGs involved in denitrification 

were identified based on information from He et al. (2015) and Wang et al. (2014) and are described in 

Table S3.3. 

 Analysis was conducted in the R statistical environment (R Core Team, 2014). Multivariate 

analysis used the 'vegan' package (Oksanen et al., 2013). Intersample distances were calculated from 

estimated COG copy number cell-1 using Bray-Curtis distances. Permutational multivariate analysis of 

variance used the ‘adonis’ function. Nonmetric multidimensional scaling (NMDS) ordination was 

conducted by chaining 10 calls of the ‘metaMDS’ function for each ordination to increase exploration of 
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the solution space. Intersample distances were corrected for metagenome size and batch effects (see 

Section 3.1) by using these as predictors in the ‘capscale’ function, and using the residuals from that as 

the distance matrix for subsequent ordinations. Means differences in copy number cell-1 were evaluated 

using the packages 'lme4' (Bates et al., 2015), 'lsmeans' (Lenth, 2013), and 'pbkrtest' (Halekoh and 

Højsgaard, 2014).  Values were square-root transformed prior to analysis to achieve a uniform 

distribution of residuals, and back-transformed for display.  

3.3 Results 

3.3.1 Sequencing effort 

We generated 142 shotgun metagenomes from eight cropping systems, spanning 2010 to 2012 at the 

Wisconsin site (ARL) and 2012 at the Michigan site (KBS). Metagenomes differed in size, ranging from 

0.63 to 2.93 Gbp, with a median of 1.40 Gbp (Table S3.1). Metagenome size differed among batches of 

samples sequenced concurrently (F2,115 = 16.7, P < 0.01); metagenomes from the second batch were ~0.28 

Gbp smaller than those from the first and third batches (see Table S3.1 for sample batch information). 

Metagenome sizes further differed by year (F2,115 = 6.9, P < 0.01), with 2012 having smaller 

metagenomes than 2010. Assembly was minimal (<1% of reads mapped onto scaffolds). A subset of 12 

samples were sequenced in both the second and third batches. Batch effects are clearly visible, although 

the relative arrangement of samples remains relatively consistent in both batches (Fig S3.1). 

3.3.2 Site-year effects 

Based on permutational multivariate analysis of variance, differences in metagenome size accounted for 

3.8% of intersample distances, while differences among sequencing batches accounted for an additional 

25.8% (both P < 0.01). Differences between sites accounted for 9.2% (P < 0.01), differences among years 

within ARL accounted for 5.8%, and differences among crops accounted for 8.5% of variability (all P < 

0.01). Intersample distances (corrected for metagenome size and sequencing batch as detailed in Section 

2.3) were reasonably well-represented by two-dimensional nonmetric multidimensional scaling (NMDS, 

Fig. 3.1). The study sites separated clearly, if imperfectly, while the three years at ARL overlapped. This 

ordination was moderately correlated to the ordination of these data without corrections for metagenome 
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size and sequencing batch (Procrustes correlation = 0.75, P < 0.001) which showed effectively the same 

trends (Fig. S3.2).  

 We used Mantel tests to evaluate whether intersample differences remained consistent across 

years at ARL. For each pair of years, we built distance matrices from the subset of samples that were 

present in both years. The least similar years were 2010 and 2011 (Mantel r = 0.48), while 2012 was more 

similar to both 2011 (Mantel r = 0.63) and 2010 (Mantel r =0.70). These correlations were statistically 

significant in all cases (P < 0.01). 

3.3.3 Cropping system effects 

We analyzed variance explained by cropping system effects separately within each site-year (Table 3.1). 

After accounting for metagenome size and sequencing batch effects, cropping systems effects were 

significant in all cases except for ARL in 2011. Metagenome size and sequencing batch effects differed in 

importance among site-years but were consistently significant. Their effect was smallest at KBS in 2012; 

KBS samples were sequenced in only two batches, while all three batches were represented in other cases 

(Table S3.1).  

NMDS ordination revealed cropping systems differences that were inconsistent across site-years, 

with relatively low stress levels indicating a reasonable depiction of overall intersample distances (Fig. 

3.2). ARL in 2010 most resembled the patterns we expected, with the corn and nonfertilized prairie 

systems on opposite ends of a continuum and the fertilized perennial systems occupying an intermediate 

space. This pattern was not replicated in other site-years. There were no clear separations among cropping 

systems in 2011 or 2012 at ARL, although in 2012 some cropping systems, notably fertilized switchgrass 

and both prairies, formed tighter clusters. KBS in 2012 exhibited the greatest cropping system effects, 

partially overlapping but still visibly distinct clusters for each system sampled. Notably, ARL in 2010 was 

the only case where differences in functional gene profiles matched our expectations based on assumed 

ecological differences among the cropping systems. 

Intersample distances uncorrected for metagenome size and sequencing batch effects resulted in 

very different ordinations (Fig. S3.2). The corn system was a clear outlier in all years at ARL while the 
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unfertilized prairie was a similar outlier in 2010 and 2012. These two systems, whose combined samples 

constituted the first sequencing batch (Table S3.1), clustered together at ARL, in sharp contrast to what 

we observe after correcting for batch effects.  

3.3.4 Dynamics of COG function categories by site-year and cropping system 

We explored whether COG functional categories followed the same site-year and cropping system 

dynamics we observed for the full set of functional genes. We focused on six categories which we 

expected a priori would respond to management or other cropping system differences (Table 3.2): 

changes in forms and availability of carbon and other nutrients were expected to impact genes involved in 

the transport and metabolism of carbohydrates (G) and inorganic ions (P), as well as energy production 

and conversion (C), while plant-microbe and microbe-microbe interactions were expected to be reflected 

by genes involved in defense (V), signal transduction (T), and processes involving secondary metabolites 

(Q). Intersample distances for each category were highly correlated to distances in overall gene profiles 

 (Table 3.2). 

We looked further into within site-year cropping systems dynamics (Table 3.3). Intersample 

distances remained highly correlated between the full dataset and function categories, although these 

correlations were generally weakest for KBS. Cropping systems effects were greater among genes 

involved in signal transduction across site years (Table 3.3); when these were ordinated there was slightly 

greater separation of the native grass mixture from the switchgrass and miscanthus systems at ARL in 

2010 and KBS in 2012, but otherwise no major changes (Fig. S3.3).  

 We found few systematic differences in average gene copy numbers within functional categories 

among cropping systems (Fig. 3.3).  The corn system was a clear outlier at ARL, with the lowest copy 

number for all functional categories, although in some instances it was not significantly different from the 

unfertilized prairie. In nearly all cases at ARL, the nonfertilized prairie had the second-lowest average 

copy number, although frequently it was closer to the perennial cropping systems than it was to corn. 

Patterns at ARL were generally consistent across years and function categories. Cropping system effects 



80 
 

 

at KBS were much weaker. Copy number averages across all cropping systems did not differ among site-

years. 

3.3.5 Denitrification pathway genes 

Fold changes in copy numbers of 16 COGs involved in denitrification (Table S3.2) exhibited some 

cropping system patterns (Fig. 3.4). The corn system frequently had individual COG copy numbers that 

differed from those of other systems within a given site-year. Where function category-level copy number 

differences between corn and other systems were smaller at KBS than ARL (Fig. 3.3), denitrification 

COG abundances were, if anything, more likely to vary for the KBS corn system (Fig. 3.4). Contrary to 

what might have been expected given patterns observed at the level of functional categories (Section 3.4), 

the corn system did not have uniformly below-average copy numbers for all COGs, notably in 2012 at 

both sites where certain COGs involved in nitrate reduction were more abundant in corn than other 

systems. We observed no consistent cropping system-based differences in copy numbers of genes 

involved in different stages of denitrification. COGs involved in a particular step of denitrification did not 

generally synchronize their relative abundances, although genes involved in nitrous oxide formation and 

consumption were broadly above the average abundance at ARL in 2010 and 2012, and below average at 

KBS. The two key catalytic genes for these processes, nitric oxide reductase (norB, COG3256) and 

nitrous oxide reductase (nosZ, COG4263) were generally less variable among cropping systems within a 

site-year than their accessory genes (COG4548 and COG3420).  

3.4 Discussion 

The cropping systems we characterized fall along an ecological gradient with continuous corn and 

unfertilized prairie at its extremes. While our two study sites differed in their geographic location and 

environmental properties, the sites themselves covered relatively small, homogenous areas, as befits a 

cropping systems trial (Sanford et al., 2016). We conducted our study over three consecutive years, a 

short period over which to observe microbial community changes (Allison et al., 2005; Jangid et al., 

2011). We thus expected that any cropping system effects we observed should be relatively consistent 

across years and replicate plots. Instead, we found that cropping systems exerted significant, but limited 
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and inconsistent influence over functional gene abundance profiles. This suggests that the composition 

and functional capabilities of soil microbial communities may respond to factors other than those which 

characterize the differences among cropping systems. 

 Prior to interpreting our findings, we must acknowledge potential biases due to technical and 

methodological issues. Our samples were sequenced in three distinct batches (see Section 2.2). We are 

aware that the IMG assembly and annotation pipeline differed among batches (Torben Nielsen, personal 

communication), as did average metagenome sizes. Functional gene profiles reflected effects of both 

batches and metagenome sizes. We corrected these statistically to the extent of our ability, but lingering 

batch effects may still have increased variability in our dataset or otherwise influenced our results.  

3.4.1 Functional gene profiles differed among cropping systems, but not systematically  

We observed differences in soil microbial functional gene profiles among cropping systems in all site-

years except for 2011 at ARL. These differences were, however, relatively small, and rarely resulted in 

clearly distinct clusters. Moreover, cropping system effects on functional gene profiles varied across years 

and were inconsistent with ecological differences among systems. Ecologically coherent and consistent 

cropping system effects on soil microbial communities are common in the literature (Liang et al., 2013; 

Mbuthia et al., 2015). In particular, annual agricultural systems reliably differ from grasslands and other 

perennial systems (Allison et al., 2005; Mao et al., 2013). We only observed differences between the 

continuous corn and unfertilized prairie systems in 2010 at ARL, although overall the corn system 

behaved differently from the other systems.  

 At ARL, the continuous corn system consistently had lower average copy numbers of COGs in 

the function categories we studied. Copy numbers were lower for the unfertilized prairie as well, but to a 

lesser extent and far less consistently, indicating this was only partially an effect of sequencing batch. 

More telling, continuous corn also exhibited the most erratic patterns in denitrification gene abundances 

at both ARL and KBS, the latter of which did not suffer from confounded sequencing batch effects. 

Previous reports show corn soil microbial communities consistently differing from those of perennial 

bioenergy crops (Jesus et al., 2016; Mao et al., 2013). Conventionally-managed annual agricultural 
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systems such as corn are characterized by fluxes of nutrients and energy that are large and simplified 

(Gliessman, 2007). These systems create high concentrations of resources present over short periods of 

time and in a narrow range of forms. These conditions could favor narrower groups of microbial taxa 

which can rapidly exploit large, brief, homogenous resource pulses (Bastian et al., 2009; Fierer et al., 

2012a). The broadly lower abundance of functional genes in the corn system could stem from pared down 

genomes in these taxa, reported to occur in response to nutrient addition (Leff et al., 2015). Overall, this 

suggests the difference between annual and perennial cropping systems is likely greater than the 

differences among perennial systems, as other studies have suggested (Jesus et al., 2016; Mao et al., 

2013).   

3.4.2 Nitrogen management effects were not reflected in functional gene abundances 

Nitrogen fertilizer effects on microbial community composition and activity are broadly consistent in the 

literature (Bodelier, 2011; Bradley et al., 2006; Fierer et al., 2012a). We observed similar fertilizer 

responses at the agronomic level, with fertilization increasing nitrous oxide emissions in the switchgrass, 

native grass, and prairie systems (Duran et al., 2016) and increases soil nitrate concentrations (Chapter 4). 

Nitrogen fertilization in the switchgrass and prairie systems substantially reduced biomass of arbuscular 

mycorrhizal fungi and Gram-negative bacteria (Oates et al.in revison). Despite this, nitrogen fertilization 

exerted no visible influence on functional gene abundances, either in overall patterns or specifically in 

denitrification pathway genes. The lack of change may simply reflect the relatively brief duration of the 

contrasting fertilization regimes, as Sun et al. (2015) reported diverse responses by nitrogen-cycling genes 

to long-term chemical fertilization.  

3.4.3 COG function categories recapitulated patterns observed for all COGs 

We hypothesized that certain COG function categories might be more or less responsive to differences 

among cropping systems and site-years. For instance, greater importance of plant-microbe interactions in 

the unfertilized systems might increase the abundance of genes involved in signaling and quorum sensing 

(Mitter et al., 2013). The only evidence we saw of this was in the continuous corn system, which had 

lower average abundances than other systems in all of the function categories we considered. Not all 
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COGs followed category-level trends, however, as we saw several cases where denitrification pathway 

COGs were more abundant than average in the corn system, even though it had lower average abundance 

of COGs related to inorganic ion transport and metabolism. While this indicates individual COGs within 

a category can experience distinct selective pressure, cropping system and site-year differences remained 

consistent across functional categories. It is plausible that the COG function category framework is too 

broad to capture the selective pressures in our system, and that a distinct level of resolution is necessary to 

explore these dynamics. 

3.4.4 Taxa rather than individual genes, may reflect key environmental drivers 

Metagenomics-based studies frequently take a gene-centric approach to microbial ecology (Kunin et al., 

2008). Gene abundances have been linked to environmental factors (Sun et al., 2015; Yoshida et al., 

2010) as well as process rates (Petersen et al., 2012; Yin et al., 2014), motivating this approach. 

Individual microbial genomes contain only a subset of the genes found in their broader taxon (Mira et al., 

2010), while lateral gene transfer provides a mechanism to further blur connections between taxonomy 

and function (Lawrence, 2002). This supports focusing on genes, rather than phylogenetically-classified 

organisms, as the stuff of selection, a perspective that strongly motivated design of this study. However, 

in our system functional gene abundances may not capture the key dynamic elements of microbial 

community composition. Other studies conducted on BCSE systems identified more consistent cropping 

system effects using PLFA (Oates et al.in revision), amplicons of the nitrous oxide reductase gene nosZ 

(Duncan et al., 2016), and targeted assembly of  nitrogen-cycling genes (Guo & Tiedje, unpublished 

data). All of these approaches reflect taxonomic composition, to differing extents, rather than functional 

gene abundance. It may be that in our study system, selection occurs on overall life strategies, rather than 

on specific metabolic capabilities. While we conceptualize these cropping systems as possessing 

fundamental ecological differences, these differences may not impose strong selection for specific genetic 

functions. The major contribution of studies like ours may be the identification of highly responsive 

microbial taxa. Isolating representatives of these taxa and studying their physiology could provide insight 

into the environmental drivers that matter at the microbial scale. 
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3.5 Conclusions 

Bioenergy feedstock cropping systems and site-years influenced soil microbial functional gene profiles to 

a smaller and less consistent extent than we anticipated. Profiles differed generally between our two study 

sites, but did not differ among years at the ARL site. Variability among cropping systems was statistically 

significant in most cases, but relative similarities among cropping systems differed among years and 

rarely reflected differences in cropping system ecology or management. Notably, nitrogen fertilization 

had no visible effects. One possible exception was the corn system, which had lower abundances of 

functional genes and greater variability in abundance of denitrification genes. Interpreting this is difficult, 

however, given that batches of samples sequenced together shared certain similarities and the corn 

samples were sequenced in the same batch. In our study system, selective pressures may act more visibly 

upon taxonomic composition, rather than the abundance of individual genes. Nonetheless, functional gene 

profiles may provide insight into the environmental dynamics that shape microbial communities at 

relatively small spatial, temporal, and ecological scales.  
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Table 3.1 Sequencing and cropping system effects on functional gene profiles  

Site Year Factor df Pseudo-F R2 

ARL 2010 Batch 2 13.6 0.410 *** 

  Size 1 1 0.012 

  Crop 4 3.8 0.229 *** 

  Residual 23  0.346 
      

 2011 Batch 2 9.9 0.347 *** 

  Size 1 1.6 0.028 

  Crop 5 1.3 0.113 

  Residual 29  0.511 
      

 2012 Batch 2 14.4 0.394 *** 

  Size 1 2.5 0.034 * 

  Crop 6 1.5 0.121 * 

  Residual 33  0.451 
      

KBS 2012 Batch 1 9.9 0.213 *** 

  Size 1 1.3 0.029 

  Crop 5 2.6 0.284 *** 

  Residual 22  0.474 

Values were calculated using permutational analysis of 

variance. Batch indicates the groups of samples that were 

sequenced together while Size indicates the amount of 

sequence generated for each metagenome. R2 values are 

sequential (Type I) and were calculated in the order listed. 

Significance was assessed by 9999 unconstrained 

permutations:  

* P < 0.05; ** P < 0.01; *** P < 0.001 

 

  



93 
 

 

Table 3.2 Properties and sources of variation affecting abundance profiles of COG function categories 

Function 

category 
COGs in 

category Copies cell-1 
Correlation 

to all COGs 

Proportion of variance explained by: 

Batch Site Year Crop 

All 4594 0.50 (0.46-0.52)  0.287 0.092 0.056 0.086 

V 115 0.50 (0.46-0.52) 0.93 0.363 0.052 0.056 0.078 

T 182 1.09 (0.98-1.16) 0.92 0.306 0.090 0.068 0.102 

C 274 0.70 (0.65-0.74) 0.91 0.246 0.114 0.056 0.110 

G 246 0.57 (0.53-0.60) 0.96 0.328 0.084 0.039 0.092 

P 232 0.51 (0.47-0.53) 0.95 0.275 0.114 0.047 0.093 

Q 97 0.84 (0.76-0.92) 0.89 0.283 0.118 0.041 0.118 

Function category interpretations: V, defensive mechanisms; T, signal transduction; C, energy 

production and conversion; G, carbohydrate transport and metabolism; P, Inorganic ion transport and 

metabolism; Q, secondary metabolite biosynthesis, transport, and catabolism. Copy cell-1 values are 

medians with 5th and 95th percentiles in parentheses. Correlations between distance matrices of 

function categories and all COGs were calculated with Mantel tests. Variance proportions were 

determined by permutational analysis of variance All values listed are significant at P < 0.001. 
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Table 3.3 Site-year effects on abundance profiles of COG function categories 

Function 

category 

Correlation to all COGs  Variance explained by Batch  Variance explained by Crop 

ARL KBS  ARL KBS  ARL KBS 

2010 2011 2012 2012  2010 2011 2012 2012  2010 2011 2012 2012 

All — — — —  0.410 0.347 0.394 0.213  0.228 0.116 0.123 0.283 

V 0.980 0.935 0.947 0.934  0.503 0.411 0.481 0.264  0.204 0.094 0.102 0.251 

T 0.970 0.910 0.945 0.918  0.430 0.349 0.451 0.242  0.314 0.118 0.124 0.294 

C 0.937 0.937 0.939 0.929  0.296 0.302 0.355 0.227  0.270 0.136 0.134 0.289 

G 0.986 0.964 0.968 0.963  0.448 0.390 0.456 0.231  0.222 0.115 0.123 0.279 

P 0.972 0.966 0.949 0.927  0.369 0.343 0.368 0.242  0.227 0.127 0.118 0.274 

Q 0.947 0.894 0.926 0.842  0.309 0.309 0.404 0.149  0.325 0.138 0.151 0.340 

Function categories are interpreted in Table 3.2. Variance proportions were calculated using permutational analysis of 

variance. Bolded values are not statistically significant (P > 0.05, 9999 permutations). 
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Table S3.1 Soil metagenome metadata 

Site Crop Year Block Fertilized 

JGI 

Project ID 

Size 

(Gbp) Sequences Batch 

ARL Continuous corn 2010 A1 Yes 1020957 1.84 9.5E+06 B1 

ARL Continuous corn 2010 A2 Yes 1020960 2.02 1.0E+07 B1 

ARL Continuous corn 2010 A3 Yes 1020963 1.84 9.4E+06 B1 

ARL Continuous corn 2010 A4 Yes 1020966 1.86 9.5E+06 B1 

ARL Continuous corn 2010 A5 Yes 1020969 1.96 1.0E+07 B1 

ARL Restored prairie 2010 A1 No 1020972 1.87 9.6E+06 B1 

ARL Restored prairie 2010 A2 No 1020975 1.95 1.0E+07 B1 

ARL Restored prairie 2010 A3 No 1020978 1.79 9.1E+06 B1 

ARL Restored prairie 2010 A4 No 1020981 1.61 8.1E+06 B1 

ARL Restored prairie 2010 A5 No 1020984 1.90 9.6E+06 B1 

ARL Continuous corn 2011 A1 Yes 1020987 1.86 9.4E+06 B1 

ARL Continuous corn 2011 A2 Yes 1020990 1.86 9.5E+06 B1 

ARL Continuous corn 2011 A3 Yes 1020993 1.47 7.4E+06 B1 

ARL Continuous corn 2011 A4 Yes 1020996 1.39 7.0E+06 B1 

ARL Continuous corn 2011 A5 Yes 1020999 1.56 7.9E+06 B1 

ARL Restored prairie 2011 A1 No 1021002 1.33 6.6E+06 B1 

ARL Restored prairie 2011 A2 No 1021005 1.54 7.7E+06 B1 

ARL Restored prairie 2011 A3 No 1021008 1.57 7.9E+06 B1 

ARL Restored prairie 2011 A4 No 1021011 1.61 8.1E+06 B1 

ARL Restored prairie 2011 A5 No 1021014 1.51 7.7E+06 B1 

ARL Continuous corn 2012 A1 Yes 1021017 1.35 6.8E+06 B1 

ARL Continuous corn 2012 A2 Yes 1021020 1.34 6.7E+06 B1 

ARL Continuous corn 2012 A3 Yes 1021023 1.37 6.8E+06 B1 

ARL Continuous corn 2012 A4 Yes 1021026 1.48 7.4E+06 B1 

ARL Continuous corn 2012 A5 Yes 1021029 1.27 6.3E+06 B1 

ARL Restored prairie 2012 A1 No 1021032 1.53 7.7E+06 B1 

ARL Restored prairie 2012 A2 No 1021035 1.53 7.8E+06 B1 

ARL Restored prairie 2012 A3 No 1021038 1.23 6.3E+06 B1 

ARL Restored prairie 2012 A4 No 1021041 1.32 6.6E+06 B1 

ARL Restored prairie 2012 A5 No 1021044 1.47 7.3E+06 B1 

ARL Native grass mix 2010 A1 Yes 1032591 1.50 6.9E+06 B2 

ARL Old field 2010 A1 Yes 1032594 1.13 5.2E+06 B2 

ARL Miscanthus 2010 A1 Yes 1032597 1.06 4.8E+06 B2 

ARL Hybrid poplar 2010 A1 Yes 1032600 1.29 5.9E+06 B2 

ARL Switchgrass 2010 A1 Yes 1032603 1.35 6.2E+06 B2 

ARL Miscanthus 2010 A2 Yes 1032606 1.93 8.9E+06 B2 

ARL Switchgrass 2010 A2 Yes 1032609 1.39 6.5E+06 B2 

ARL Native grass mix 2010 A2 Yes 1032612 1.50 7.3E+06 B2 

ARL Old field 2010 A2 Yes 1032615 1.25 5.7E+06 B2 

ARL Hybrid poplar 2010 A2 Yes 1032618 1.76 8.1E+06 B2 
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Table S3.1 cont. 

Site Crop Year Block Fertilized 

JGI 

Project ID 

Size 

(Gbp) Sequences Batch 

ARL Switchgrass 2010 A3 Yes 1032621 1.36 6.2E+06 B2 

ARL Miscanthus 2010 A3 Yes 1032624 1.78 8.1E+06 B2 

ARL Native grass mix 2010 A3 Yes 1032627 1.31 6.0E+06 B2 

ARL Hybrid poplar 2010 A3 Yes 1032630 1.60 7.4E+06 B2 

ARL Old field 2010 A3 Yes 1032633 1.55 7.1E+06 B2 

ARL Hybrid poplar 2010 A4 Yes 1032636 1.19 5.5E+06 B2 

ARL Old field 2010 A4 Yes 1032639 1.25 5.8E+06 B2 

ARL Native grass mix 2010 A4 Yes 1032642 1.22 5.6E+06 B2 

ARL Miscanthus 2010 A4 Yes 1032645 1.39 6.3E+06 B2 

ARL Switchgrass 2010 A4 Yes 1032648 1.34 6.1E+06 B2 

ARL Hybrid poplar 2010 A5 Yes 1032651 1.24 5.7E+06 B2 

ARL Native grass mix 2010 A5 Yes 1032654 2.93 1.3E+07 B2 

ARL Switchgrass 2010 A5 Yes 1032657 1.23 5.6E+06 B2 

ARL Old field 2010 A5 Yes 1032660 1.07 4.9E+06 B2 

ARL Miscanthus 2010 A5 Yes 1032663 1.33 6.1E+06 B2 

ARL Restored prairie 2011 A1 Yes 1032666 2.02 9.2E+06 B2 

ARL Miscanthus 2011 A1 Yes 1032669 1.51 6.8E+06 B2 

ARL Hybrid poplar 2011 A1 Yes 1032672 1.08 4.9E+06 B2 

ARL Old field 2011 A1 Yes 1032675 1.07 4.9E+06 B2 

ARL Switchgrass 2011 A1 No 1032681 1.13 5.2E+06 B2 

ARL Switchgrass 2011 A2 No 1032684 1.13 5.2E+06 B2 

ARL Restored prairie 2011 A2 Yes 1032687 1.44 6.7E+06 B2 

ARL Old field 2011 A2 Yes 1032690 1.48 6.8E+06 B2 

ARL Hybrid poplar 2011 A2 Yes 1032693 1.21 5.5E+06 B2 

ARL Switchgrass 2011 A3 Yes 1032696 0.90 4.2E+06 B2 

ARL Miscanthus 2011 A3 Yes 1032699 1.45 6.7E+06 B2 

ARL Restored prairie 2011 A3 Yes 1032702 1.06 5.0E+06 B2 

ARL Hybrid poplar 2011 A3 Yes 1032705 1.06 4.8E+06 B2 

ARL Old field 2011 A3 Yes 1032708 1.29 5.9E+06 B2 

ARL Hybrid poplar 2011 A4 Yes 1032711 1.25 5.8E+06 B2 

ARL Old field 2011 A4 Yes 1032714 1.36 6.3E+06 B2 

ARL Restored prairie 2011 A4 Yes 1032717 1.28 5.9E+06 B2 

ARL Miscanthus 2011 A4 Yes 1032720 1.32 6.1E+06 B2 

ARL Switchgrass 2011 A4 Yes 1032723 0.87 4.1E+06 B2 

ARL Hybrid poplar 2011 A5 Yes 1032726 1.36 6.3E+06 B2 

ARL Restored prairie 2011 A5 Yes 1032729 1.32 6.1E+06 B2 

ARL Switchgrass 2011 A5 Yes 1032732 1.36 6.3E+06 B2 

ARL Old field 2011 A5 Yes 1032735 1.53 7.0E+06 B2 

ARL Miscanthus 2011 A5 Yes 1032738 1.33 6.2E+06 B2 

ARL Native grass mix 2012 A1 Yes 1032741 1.22 5.6E+06 B2 
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Table S3.1 cont. 

Site Crop Year Block Fertilized 

JGI 

Project ID 

Size 

(Gbp) Sequences Batch 

ARL Restored prairie 2012 A1 Yes 1032744 1.30 6.1E+06 B2 

ARL Old field 2012 A1 Yes 1032747 1.55 7.3E+06 B2 

ARL Miscanthus 2012 A1 Yes 1032750 1.10 5.1E+06 B2 

ARL Hybrid poplar 2012 A1 Yes 1032753 1.18 5.3E+06 B2 

ARL Switchgrass 2012 A1 Yes 1032756 1.53 6.9E+06 B2 

ARL Switchgrass 2012 A1 No 1032759 0.63 2.9E+06 B2 

ARL Miscanthus 2012 A2 Yes 1032762 1.36 6.2E+06 B2 

ARL Switchgrass 2012 A2 No 1032765 1.47 6.8E+06 B2 

ARL Native grass mix 2012 A2 Yes 1032768 1.32 6.0E+06 B2 

ARL Restored prairie 2012 A2 Yes 1032771 1.18 5.4E+06 B2 

ARL Old field 2012 A2 Yes 1032774 1.36 6.2E+06 B2 

ARL Hybrid poplar 2012 A2 Yes 1032777 1.33 6.0E+06 B2 

ARL Miscanthus 2012 A3 Yes 1032780 1.26 5.7E+06 B2 

ARL Restored prairie 2012 A3 Yes 1032783 1.36 6.2E+06 B2 

ARL Native grass mix 2012 A3 Yes 1032786 1.02 4.7E+06 B2 

ARL Hybrid poplar 2012 A3 Yes 1032789 1.59 7.2E+06 B2 

ARL Old field 2012 A3 Yes 1032792 1.34 6.1E+06 B2 

ARL Hybrid poplar 2012 A4 Yes 1032795 1.16 5.3E+06 B2 

ARL Old field 2012 A4 Yes 1032798 0.97 4.5E+06 B2 

ARL Native grass mix 2012 A4 Yes 1032801 1.16 5.4E+06 B2 

ARL Restored prairie 2012 A4 Yes 1032804 1.58 7.3E+06 B2 

ARL Miscanthus 2012 A4 Yes 1032807 1.22 5.5E+06 B2 

ARL Switchgrass 2012 A4 Yes 1032810 1.25 5.6E+06 B2 

ARL Switchgrass 2012 A4 No 1032813 1.32 6.0E+06 B2 

ARL Hybrid poplar 2012 A5 Yes 1032816 1.45 6.5E+06 B2 

ARL Restored prairie 2012 A5 Yes 1032819 1.30 6.0E+06 B2 

ARL Native grass mix 2012 A5 Yes 1032822 1.17 5.3E+06 B2 

ARL Switchgrass 2012 A5 Yes 1032825 2.04 9.4E+06 B2 

ARL Switchgrass 2012 A5 No 1032828 1.89 8.7E+06 B2 

ARL Old field 2012 A5 Yes 1032831 1.94 8.8E+06 B2 

ARL Miscanthus 2012 A5 Yes 1032834 1.76 8.1E+06 B2 

KBS Continuous corn 2012 K2 Yes 1032837 2.08 9.5E+06 B2 

KBS Continuous corn 2012 K4 Yes 1032840 2.00 9.2E+06 B2 

KBS Switchgrass 2012 K2 Yes 1032843 1.66 7.7E+06 B2 

KBS Switchgrass 2012 K3 Yes 1032846 1.69 7.8E+06 B2 

KBS Switchgrass 2012 K4 Yes 1032849 1.20 5.6E+06 B2 

KBS Miscanthus 2012 K3 Yes 1032852 1.40 6.4E+06 B2 

KBS Native grass mix 2012 K2 Yes 1032855 1.13 5.2E+06 B2 

KBS Native grass mix 2012 K3 Yes 1032858 1.08 4.9E+06 B2 

KBS Native grass mix 2012 K4 Yes 1032861 1.06 4.9E+06 B2 
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Table S3.1 cont. 

Site Crop Year Block Fertilized 

JGI 

Project ID 

Size 

(Gbp) Sequences Batch 

KBS Native grass mix 2012 K5 Yes 1032864 1.08 5.0E+06 B2 

KBS Hybrid poplar 2012 K2 Yes 1032867 0.88 4.3E+06 B2 

KBS Hybrid poplar 2012 K3 Yes 1032870 0.94 4.5E+06 B2 

KBS Hybrid poplar 2012 K4 Yes 1032873 0.92 4.4E+06 B2 

KBS Hybrid poplar 2012 K5 Yes 1032876 0.78 3.7E+06 B2 

KBS Old field 2012 K1 Yes 1032879 0.89 4.3E+06 B2 

KBS Old field 2012 K2 Yes 1032882 0.65 3.1E+06 B2 

KBS Old field 2012 K3 Yes 1032885 0.84 4.0E+06 B2 

KBS Old field 2012 K4 Yes 1032888 0.86 4.1E+06 B2 

KBS Restored prairie 2012 K1 No 1032891 0.73 3.5E+06 B2 

KBS Restored prairie 2012 K5 No 1032894 0.80 3.8E+06 B2 

KBS Continuous corn 2012 K1 Yes 1040325 1.60 7.3E+06 B3 

KBS Switchgrass 2012 K1 Yes 1040328 1.58 7.3E+06 B3 

KBS Miscanthus 2012 K1 Yes 1040331 1.63 7.4E+06 B3 

KBS Native grass mix 2012 K1 Yes 1040334 1.47 6.6E+06 B3 

KBS Hybrid poplar 2012 K1 Yes 1040337 1.47 6.7E+06 B3 

KBS Continuous corn 2012 K1 Yes 1040340 1.38 6.2E+06 B3 

KBS Miscanthus 2012 K2 Yes 1040343 1.38 6.3E+06 B3 

KBS Restored prairie 2012 K2 No 1040346 1.66 7.5E+06 B3 

KBS Continuous corn 2012 K3 Yes 1040349 1.46 6.6E+06 B3 

KBS Miscanthus 2012 K4 Yes 1040352 1.56 7.1E+06 B3 

KBS Restored prairie 2012 K4 No 1040355 2.06 9.3E+06 B3 

KBS Continuous corn 2012 K5 Yes 1040358 1.47 6.6E+06 B3 

KBS Switchgrass 2012 K5 Yes 1040361 2.19 9.9E+06 B3 

KBS Miscanthus 2012 K5 Yes 1040364 1.47 6.7E+06 B3 

KBS Old field 2012 K5 Yes 1040367 1.56 7.1E+06 B3 

ARL Native grass mix 2010 A5 Yes 1040370 1.14 5.1E+06 B3 

ARL Switchgrass 2011 A2 Yes 1040373 1.58 7.1E+06 B3 

ARL Miscanthus 2011 A2 Yes 1040376 1.40 6.3E+06 B3 

ARL Switchgrass 2011 A3 Yes 1040379 1.69 7.7E+06 B3 

ARL Switchgrass 2011 A3 No 1040382 2.21 1.0E+07 B3 

ARL Switchgrass 2011 A4 No 1040385 1.86 8.5E+06 B3 

ARL Restored prairie 2011 A4 Yes 1040388 1.59 7.3E+06 B3 

ARL Switchgrass 2011 A5 Yes 1040391 1.74 7.9E+06 B3 

ARL Miscanthus 2011 A5 Yes 1040394 1.36 6.2E+06 B3 

ARL Hybrid poplar 2011 A5 Yes 1040397 1.50 6.8E+06 B3 

ARL Old field 2011 A5 Yes 1040400 1.37 6.2E+06 B3 

ARL Switchgrass 2012 A1 Yes 1040403 2.06 9.3E+06 B3 

ARL Old field 2012 A1 Yes 1040406 1.91 8.5E+06 B3 

ARL Switchgrass 2012 A2 Yes 1040409 1.66 7.6E+06 B3 
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Table S3.1 cont. 

Site Crop Year Block Fertilized 

JGI 

Project ID 

Size 

(Gbp) Sequences Batch 

ARL Switchgrass 2012 A2 No 1040412 1.71 7.7E+06 B3 

ARL Miscanthus 2012 A2 Yes 1040415 1.61 7.4E+06 B3 

ARL Switchgrass 2012 A3 Yes 1040418 1.36 6.2E+06 B3 

ARL Switchgrass 2012 A3 No 1040421 2.03 9.3E+06 B3 

Boldface indicates technical replicates. 
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Table S3.2 Metadata for clusters of orthologous groups (COG) annotations  

NOTE: This table contains 4873 records and would cover over 140 printed pages. Only the first 24 records are shown here 

COG 

Function 

category COG name 

COG model 

length (bp) 

Single-

copy Outdated 

COG0001 H Glutamate-1-semialdehyde aminotransferase 1296 FALSE FALSE 

COG0002 E N-acetyl-gamma-glutamylphosphate reductase 1047 FALSE FALSE 

COG0003 P Anion-transporting ATPase, ArsA/GET3 family 966 FALSE FALSE 

COG0004 P Ammonia channel protein AmtB 1227 FALSE FALSE 

COG0005 F Purine nucleoside phosphorylase 786 FALSE FALSE 

COG0006 E Xaa-Pro aminopeptidase 1152 FALSE FALSE 

COG0007 H Uroporphyrinogen-III methylase (siroheme synthase) 732 FALSE FALSE 

COG0008 J Glutamyl- or glutaminyl-tRNA synthetase 1416 FALSE FALSE 

COG0009 J tRNA A37 threonylcarbamoyladenosine synthetase subunit TsaC/SUA5/YrdC 633 FALSE FALSE 

COG0010 E Arginase family enzyme 915 FALSE FALSE 

COG0011 S Uncharacterized conserved protein YqgV, UPF0045/DUF77 family 300 FALSE FALSE 

COG0012 J Ribosome-binding ATPase YchF, GTP1/OBG family 1116 FALSE FALSE 

COG0013 J Alanyl-tRNA synthetase 2637 FALSE FALSE 

COG0014 E Gamma-glutamyl phosphate reductase 1251 FALSE FALSE 

COG0015 F Adenylosuccinate lyase 1314 FALSE FALSE 

COG0016 J Phenylalanyl-tRNA synthetase alpha subunit 1005 TRUE FALSE 

COG0017 J Aspartyl/asparaginyl-tRNA synthetase 1305 FALSE FALSE 

COG0018 J Arginyl-tRNA synthetase 1731 FALSE FALSE 

COG0019 E Diaminopimelate decarboxylase 1182 FALSE FALSE 

COG0020 I Undecaprenyl pyrophosphate synthase 735 FALSE FALSE 

COG0021 G Transketolase 1989 FALSE FALSE 

COG0022 C Pyruvate/2-oxoglutarate/acetoin dehydrogenase complex, dehydrogenase (E1) 

component 

972 FALSE FALSE 

COG0023 J Translation initiation factor 1 (eIF-1/SUI1) 312 FALSE FALSE 

COG0024 J Methionine aminopeptidase 765 FALSE FALSE 

COGs fitting into multiple function categories are counted in all of them. Single-copy denotes the 37 universal single-copy genes used for 

normalization across samples. Outdated indicates COGs removed in the 2014 update of the database; these were not included in the study. 
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Table S3.3 Denitrification pathway COGs 

Process COG COG name 

Function 

category Gene symbol Ref 

Nitrate 

reduction 

COG2180 Nitrate reductase assembly protein NarJ, required for insertion of 

molybdenum cofactor 

CPO narJ/narW 1 

 COG2181 Nitrate reductase gamma subunit CP narI/narV 1 

 COG2132 Multicopper oxidase with three cupredoxin domains (includes cell 

division protein FtsP and spore coat protein CotA) 

DPM  1 

 COG5013 Nitrate reductase alpha subunit CP narG/narZ/nxrA 1,2 

 COG1140 Nitrate reductase beta subunit CP narH/narY/nxrB 1,2 

 COG3043 Nitrate reductase cytochrome c-type subunit CP napB 1 

 COG3005 Tetraheme cytochrome c subunit of nitrate or TMAO reductase C  1,2 

 COG2223 Nitrate/nitrite transporter NarK P narK 2 

Nitrite 

reduction 

COG1251 NAD(P)H-nitrite reductase, large subunit C  1 

COG3303 Formate-dependent nitrite reductase, periplasmic cytochrome c552 

subunit 

P  1 

 COG2146 Ferredoxin subunit of nitrite reductase or a ring-hydroxylating 

dioxygenase 

PQ  1 

 COG3301 Formate-dependent nitrite reductase, membrane component NrfD P  1 

Nitric oxide 

reduction 

COG3256 Nitric oxide reductase large subunit P norB 1 

COG4548 Nitric oxide reductase activation protein P  1 

Nitrous oxide 

reduction 

COG4263 Nitrous oxide reductase P nosZ 1,2 

COG3420 Nitrous oxidase accessory protein NosD, contains tandem CASH 

domains 

P nosD 2 

Data from the 2014 update to the COG database. Function categories: C, Energy production and conversion; D, cell cycle control, cell division, 

chromosome partitioning; M, Cell wall/membrange/envelope biogenesis; O, Posttranslational modification, protein turnover, chaperones; P, 

Inorganic ion transport and metabolism; Q, Secondary metabolite biosynthesis, transport and catabolism. Gene symbols obtained from the KEGG 

database. References: 1) S. He et al., MBio. 6, e00066–15 (2015); 2) Z. Wang et al., PLoS One. 9, e113603 (2014). 
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Figure 3.1 Site and year effects on soil microbial functional gene profiles. Intersample distances are 

corrected for metagenome size and sequencing batch effects. Large opaque symbols indicate mean axis 

scores for each site-year.  
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Figure 3.2 Cropping system effects on soil microbial community functional gene profiles. Ordinations 

conducted separately by site-year. Intersample distances are corrected for effects of metagenome size and 

sequencing batch.   
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Figure 3.3 Estimated copy numbers for COGs by select function categories. Values were inverse 

hyperbolic sine (IHS) transformed for analysis, with means ± s.e. back-transformed for display. 
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Figure 3.4 Fold change in abundance relative to global means for denitrification-pathway COGs. Fold change calculated as log2 differences in 

estimated copy numbers between system-site-year and global means. 
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Figure S3.1 Sequencing batch effects on functional gene profiles. Line segments connect technical 

replicates sequenced in separate batches. 
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Figure S3.2 Site and year effects on soil microbial functional gene profiles without correction for 

metagenome size and sequencing batch effects on intersample distances. Large opaque symbols indicate 

mean axis scores for each site-year. 
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Figure S3.3 Cropping system effects on abundances of genes involved in cell signaling (COG function 

category V).  
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 Abstract 

Nitrous oxide (N2O) is a potent greenhouse gas and major component of the net global warming potential 

of bioenergy feedstock production systems. Numerous environmental factors influence soil N2O 

production, with effects that may vary among cropping systems. We investigated how soil temperature, 

water filled pore space (WFPS), and concentrations of soil nitrate and ammonium constrained N2O 

production from a range of cropping systems including conventionally-managed annual grain crops, 

perennial warm-season grasses, hybrid poplar, and polycultures of tallgrass prairie species over six 

growing seasons at two field sites. We observed higher N2O fluxes and concentrations of soil nitrate in 

the annual cropping systems, and in most fertilized perennial systems relative to their nonfertilized 

counterparts. Measurements of ammonium concentrations, soil temperature, and WFPS within a site had 

similar distributions across cropping systems. We used quantile regression to evaluate whether levels of 

the four environmental factors limited the highest fluxes observed. At both sites, all environmental factors 

were significantly and positively related to the 95th percentile of N2O fluxes. Both our models and 

observations found high fluxes could occur at low soil moistures, sub-zero soil temperatures, and minimal 

nitrogen concentrations. Differences in cropping-system specific quantile regression coefficients did not 

systematically reflect broad management or other cropping system differences. Overall, environmental 

conditions appeared to define bounds for N2O fluxes, but these bounds do not appear to drive cropping 

system-level differences.  
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4.1 Introduction 

Nitrous oxide (N2O) is one of the major contributors to global radiative forcing (Forster et al., 2007; 

Robertson et al., 2000) and is currently the single most important ozone-depleting substance 

(Ravishankara et al., 2009). In the United States, approximately 75% of N2O emissions come from 

fertility management of agricultural soils (U.S. Environmental Protection Agency, 2014). N2O emissions 

can counterbalance net carbon balance benefits of fossil fuel displacement for many agricultural systems 

(Crutzen et al., 2008), making the management and mitigation of N2O production a major aspect of long-

term cropping system sustainability. This consideration is particularly important for the development of 

bioenergy feedstock production systems from perennial crops and on marginal lands.  

 By broadening the range of economically viable cropping systems, bioenergy feedstock 

production offers many ecological advantages (Robertson et al., 2008). Bioenergy feedstock cropping 

systems can increase diversity in agricultural regions, improving landscape-level provision of ecosystem 

services (Werling et al., 2014). Some of these systems may function on agronomically and ecologically 

marginal lands (Gelfand et al., 2013), which could lead to long-term improvement in their soil carbon 

content and erosion potential (Blanco-Canqui, 2010). While agroecosystems incorporating perenniality 

and plant species diversity may exhibit more efficient nutrient cycling (Hooper et al., 2005; Hooper and 

Vitousek, 1998), nitrogen fertilization will likely factor into management of bioenergy feedstock cropping 

systems (Montross et al., 2013). We have limited knowledge of how perennial and polyculture bioenergy 

feedstock cropping systems might function under agronomic management (Stehfest and Bouwman, 2006; 

Trybula et al., 2015), leading to considerable uncertainty about how biotic and abiotic factors in these 

systems will interact to influence N2O production dynamics.  

 Factors influencing N2O production in soil have received considerable study over the years. We 

know that most soil N2O production results from the microbial processes of nitrification (oxidation of 

ammonia [NH3] to nitrate [NO3
-]) and denitrification (reduction of NO3

- to N2), both of which can produce 

N2O as a side-product (Bremner, 1997; Butterbach-Bahl et al., 2013). Of the two processes, 

denitrification frequently accounts for the majority of N2O production, particularly in soils that are moist, 
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finely-textured, or otherwise oxygen-limited (Mathieu et al., 2006). Despite the microbial nature of these 

processes, under most conditions abiotic environmental factors typically determine N2O fluxes 

(Wallenstein et al., 2006). These factors include concentrations of substrates (NH3, NO3
-, and labile 

carbon), soil oxygen availability (typically driven by soil water-filled pore space [WFPS]), soil 

temperature, and pH (Wallenstein et al., 2006). With multiple factors influencing N2O fluxes, standard 

regression techniques rarely generate clear, consistent relationships between specific factors and flux. 

Alternative methods, such as quantile regression (Cade and Noon, 2003), may serve to determine the 

extent to which a particular variable imposes an upper bound on observed N2O fluxes. Further 

complicating matters, the effects of these factors may also vary by cropping systems and soils (Dechow 

and Freibauer, 2011; Lehuger et al., 2009). For instance, soil texture influences the relationship between 

soil moisture and nitrification rates (Garrido et al., 2002). Similarly, the effect of nitrogen fertilizer 

application on N2O emissions differs among cropping systems, although this may reflect immobilization 

of exogenous nitrogen, in addition to responses to substrate concentrations (Duran et al., 2016; Stehfest 

and Bouwman, 2006). Efforts to model N2O fluxes from novel cropping systems such as perennial, 

polycultural bioenergy feedstocks, should consider cropping system-specific responses to environmental 

drivers of N2O production. 

Our prior study of N2O dynamics in this system identified substantial variation in N2O fluxes 

among cropping systems and suggested that environmental factors might influence N2O fluxes in a 

system-specific manner (Oates et al., 2016). In the present study, we employed a longer data record to 

examine these relationships in greater detail. Rather than treating environmental factors as direct 

predictors of N2O fluxes, as we did in our earlier work and as other studies have done (Castellano et al., 

2010; Dechow and Freibauer, 2011; Liu et al., 2013), we interpreted these factors as constraints on 

maximum N2O production. This approach is highly appropriate for systems where multiple factors jointly 

contribute to variability in the property of interest (Cade and Noon, 2003). Through this work, we tested 

two hypotheses: 1) soil moisture, soil temperature, and concentrations of inorganic nitrogen (NH4
+, NO3

-) 
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independently delineate upper bounds of N2O production and 2) the values of those upper bounds differ 

among cropping systems.  

4.2 Methods 

4.2.1 Experimental design and study sites 

We conducted this study on the DOE-Great Lakes Bioenergy Research Center’s Bioenergy Cropping 

Systems Experiment (BCSE), an agronomic trial situated at the Michigan State University W. K. Kellogg 

Biological Station (KBS, 42 23'47" N, 85 22'26"W, 288 m.a.s.l) and the University of Wisconsin-

Madison Arlington Agricultural Research Station (ARL, 43 17'45" N, 89 22'48" W, 315 m.a.s.l. The 

BCSE consisted of ten treatments. From 2009 to 2011, three treatments consisted of the phases of a no-

tillage corn (Zea mays L.)-soybean (Glycine max L.)-canola (Brassica napus L.) rotation; from 2012 to 

2014, these treatments consisted of no-tillage continuous corn and the two phases of a corn-soybean 

rotation, all of which were grown with a rye (Secale cereale L.) and Austrian winter pea (Pisumsativum 

L.) cover crop (Table S4.1). The remaining treatments were in place throughout the measurement period 

and consisted of continuous no-illage corn, monocultures of switchgrass (Panicum virgatum L.), 

miscanthus (Miscanthus × giganteus), and hybrid poplar (Populus nigra × Populus maximowiczii), a 5-

species native grass mix, an old field recruited from the pre-existing seedbank, and an 18-species restored 

tallgrass prairie. Species and variety information are presented in Table S1 of Oates et al. (2016).  

All treatments were planted in 27 × 43-m plots in a five-replicate randomized complete block 

design and managed with field-scale equipment. Annual grain systems were managed following 

recommendations from the university extension programs from their respective states. The poplar system 

was fertilized in 2010 (210 kg N ha-1 as 34-0-0 granular ammonium nitrate) and harvested by coppicing 

during the 2013-2014 winter. Subplots (10 × 43-m) were established in all other systems to test effects of 

nitrogen fertilization. The restored prairie subplots and main plots of all other systems received annual 

spring nitrogen fertilization (56 kg N ha-1 as 34-0-0 granular ammonium nitrate), while the main restore 

prairie plot and subplots of all other systems were not fertilized. Corn systems were harvested for grain 

and stover separately, with near-complete stover removal. Perennial systems were harvested following the 
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first frost event in the fall, with a residual stubble height of 10 cm. Poplar systems were harvested once, in 

2013, and allowed to coppice. Fertilization dates for all systems are given in Table S4.2, while full details 

on agronomic management are presented in Sanford et al. (2016).  

Soils at KBS were primarily Kalamazoo loam (Fine-Loamy, Mixed, Semiactive, Mesic Typic 

Hapludalfs). Mean annual temperature from 1981 to 2010 was 9.9 °C and mean annual precipitation was 

1027 mm (MSCO, 2013). Prior to BCSE establishment, the field was planted to alfalfa (Medicago sativa 

L.). The switchgrass, native grass mix, and restored prairie treatments at KBS suffered seed loss 

following flooding in 2008 and were reseeded in 2009. Soils at ARL were predominantly Plano silt-loam 

(Fine-Silty, Mixed, Superactive, Mesic Typic Arguidolls). Mean annual temperature from 1981 to 2010 

was 6.8 °C and mean annual precipitation was 869 mm (NWS, 2013). Pre-BCSE land use differed among 

blocks: the corn phase of a corn-soybean rotation (Blocks A1-A3) or an alfalfa-orchardgrass (Dactylis 

glomerata L.) hay mixture (Blocks A4-A5). Following severe stand loss during the 2008-2009 winter, 

miscanthus was replanted at ARL in 2010 

4.2.2 Data generation 

All field sampling procedures are described in detail in Oates et al. (2016). Systems were sampled 

biweekly during the growing season, with additional sampling following fertilization and precipitation 

events, and at reduced frequency during winter, particularly earlier in the study. Static chambers were 

used to estimate trace gas emissions. Chambers were cylindrical (28.5 cm diameter, ~17 cm headspace, 

~10 L volume) and inserted to a depth of ~5 cm. Chamber lids were fitted with a septum for gas 

extraction and a 2-mm diameter vent tube for pressure equilibration. Headspace gas samples (30 mL) 

were collected immediately upon chamber closure and at 3×20 min intervals. Samples were placed in 

glass 5.9-mL Exetainer vials (Labco Limited, Buckinghamshire, UK), using 20 mL to flush the vial 

before over-pressurizing with the remaining 10 mL. Following gas chromatography, CO2 concentration 

was detected using an infrared gas analyzer (IRGA, LiCor 820, Lincoln, NE, USA) and N2O 

concentration was detected using an electron capture detector (micro-ECD, Agilent 7890A GC System, 

Santa Clara, CA, USA).  



115 

 

 

 Prior to estimation of N2O fluxes, CO2 accumulation curves were visually inspected for outliers 

indicating compromised vial integrity or other mechanical errors. In samples with four vials, nonlinearity 

of fluxes was evaluated using the “HMR” package (v0.3.1, Pedersen, 2015) in the R statistical 

environment (v3.2.5, R Core Team, 2016). Following this classification, all data were again visually 

inspected with an emphasis on identifying outliers in N2O concentrations, particularly those that might 

drive a nonlinear fit. Nonlineaer flux estimates from the “HMR” function were used for samples that 

passed this secondary inspection without any data removal and whose nonlinear estimate was outside the 

95% confidence interval for the linear flux estimate. For all other samples, linear flux estimates were 

used. 

 From 2010 onward, soil cores (3.7 cm diameter, 15 cm depth at ARL, 25 cm depth at KBS) were 

collected concurrently with trace gas sampling. Inorganic soil nitrogen was extracted from a 10 g field-

moist subsample using 2 M KCl following Robertson et al. (1999). Ammonium and nitrate concentrations 

were determined using a Flow Solution 3100 segmented flow injection analyzer (OI Analytical, College 

Station, TX, USA), using USEPA methods 27200110 and 27190110 respectively. Nitrate values ≤ 0 were 

assigned a value of 0.05 µg-N g-1 soil, which corresponds to the instrument detection limit. 

 Soil temperature was measured at the time of trace gas sampling using a 15-cm temperature probe 

(Checktemp 1C, Hanna Instruments, Smithfield, RI, US). Soil moisture was measured at KBS by 

determining gravimetric water content (GWC) for the soil nitrogen samples. At ARL, moisture was 

measured as volumetric water content (VWC) within 1 m of the static chamber using a time domain 

reflectometer with 20-cm rods (FieldScout 300, Spectrum Technologies, Plainfield, IL, US). Bulk density 

was measured for all plots in 2008 and 2013. We calculated mean bulk density values groups of similarly-

managed systems: annual grain crops, poplar, and all other systems. At ARL, blocks were placed into 

three groups based on their topographic position and soil properties: A1 and A3, A4 and A5, and A2; at 

KBS all blocks were analyzed together. Water-filled pore space (WFPS) was calculated from bulk density 

(Bd) and soil particle density (Pd, assumed to be a constant 2.65 g cm-3): 
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𝑊𝐹𝑃𝑆 = 𝑉𝑊𝐶 × (1 −
𝐵𝑑

𝑃𝑑
) = 𝐺𝑊𝐶 × 𝐵𝑑 × (1 −

𝐵𝑑

𝑃𝑑
) 

4.2.3 Data analysis 

N2O fluxes as well as soil ammonium and nitrate values were inverse hyperbolic sine (IHS) transformed 

prior to analysis. IHS transformation resembles a log transformation at large input values, but is defined at 

0 and allows negative values. We used this transformation to handle negative N2O fluxes, which are 

periodically observed (Molodovskaya et al., 2012), and to avoid amplifying measurement errors for 

values close to the detection limit of our instruments.  

All analyses were conducted in the R statistical environment. Graphics were generated using the 

ggplot2 package (Wickham, 2009) using default functions to generate boxplot quantiles and LOESS fits. 

Quantile regression used the “rq” function in the “quantreg” package (Koenker, 2016). We used τ = 0.95, 

which approximately corresponded to the 95th percentile of the data, and estimated standard errors using 

the kernel method. Significance of factors was evaluated using model comparison at the P < 0.05 

significance level.  

4.3 Results 

Our dataset consisted of 10,572 individual N2O flux measurements from 2 sites over a 6-year period. We 

recorded a median of 16 observations per plot per year (range 5 to 22). For a majority of observations, we 

also had accompanying measurements of soil temperature, water filled pore space (WFPS), and 

ammonium and nitrate concentrations (Table 4.1). Soil nitrogen data had the sparsest coverage, with no 

data in 2009 and lower frequency of data collection starting in 2013. Despite this, we generated 4,120 

observations with full environmental data. 

4.3.1 Distributions of N2O fluxes and potential environmental drivers, by site and system 

Annual cropping systems (described in Table S4.1) generated nearly identical distributions of N2O fluxes 

and environmental variables (Fig. S4.1), and were thus grouped for analysis.  Soil nitrogen concentrations 

and N2O fluxes varied by site, cropping system, and fertilization (Fig. 4.1). In contrast, WFPS differed 



117 

 

 

only among sites while variability in soil temperature among systems was smaller than the range of 

interannual variability (Fig. S4.2). 

 Within a cropping system, N2O flux observations varied over multiple orders of magnitude (Fig. 

4.1). Fluxes above 100 g N2O-N ha-1 day-1 occurred in nearly all systems, but were more prevalent in 

annual systems (Fig. 4.1). There were strong site × cropping system interactions. The poplar and fertilized 

switchgrass systems produced lower fluxes at KBS than at ARL while fertilized old field and native grass 

mix systems were virtually identical at both sites. Nitrogen fertilization effects also varied among 

systems, with strong effects in the switchgrass and old field and minimal effects in the native grass mix 

and restored prairie.  

 Different patterns were observed for soil NO3
- and NH4

+ concentrations. Sites, cropping systems, 

and nitrogen fertilization all influenced NO3
- (Fig. 4.1). Overall NO3

- concentrations were lower in 

perennial systems than annual systems, notably in the native grass mix and restored prairie, while within a 

site NH4
+ was relatively consistent across systems. NO3

- concentrations tended to be higher at ARL than 

in comparable systems at KBS, while NH4
+ concentrations at KBS were slightly higher and less variable. 

Data to compare fertilization effects within treatment were only available for ARL, where fertilization 

greatly increased NO3
- concentrations in all systems except for the restored prairie, but impacted NH4

+ to 

a much smaller degree. 

4.3.2 Environmental constraints on N2O fluxes 

We used quantile regression to correlate environmental factors to the upper bound of N2O fluxes, with 

τ=0.95 approximately corresponding to the 95th percentile of fluxes at a given value of each constraint. 

All four environmental factors tested significantly and positively related to this upper bound (Fig. 4.2). 

Intercepts from these regressions indicated relatively high fluxes even at minimal values of environmental 

factors; this was particularly unexpected for soil nitrogen, which is essential for N2O production. We 

observed, however, that NO3
- and NH4

+ are uncorrelated at lower concentrations (Fig. S4.3), indicating 

that even if one form is nearly absent the other may be available as a substrate. At ARL, including both 

NO3
- and NH4

+ improved the quantile regression model over one using only NO3
-  
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(F1,3152 = 6.5, P < 0.05), although the same was not true at KBS (F1, 1225 = 2.7, P =0.10). 

 In most cases, fitting separate slopes and intercepts for each cropping system significantly 

improved model performance (all P < 0.05). The sole exception was the NO3
- relationship at KBS, where 

only separate slopes were supported. In keeping with the trends observed for the full dataset, most slopes 

were significantly positive (Fig. 4.3). The most ecologically consistent cropping system effect occurred in 

the response to temperature, with more positive slopes for annual systems at both sites and nonsignificant 

slopes in most nonfertilized systems. Similarly, nonfertilized systems at ARL generally had 

nonsignificant responses to both NO3
- and NH4

+, although it should be noted that very few instances of 

high nitrogen concentrations were observed for these systems (Fig. 4.1, Fig. S4.3). WFPS responses were 

consistent across systems at ARL and considerably more variable at KBS. Intercepts for soil nitrogen and 

temperature were generally positive and substantial (Fig. 4.4). WFPS intercepts for most ARL systems 

were indistinguishable from zero, but were significantly positive for all KBS systems. The miscanthus 

system at KBS exhibited very curious behavior, with a high intercept and negative slope for NO3
- and the 

opposite for NH4
+. Overall, system-specific quantile regressions replicated the patterns observed for site-

level data. 

4.4 Discussion 

4.4.1 Cropping systems differ in their nitrogen dynamics 

We observed substantial cropping system-level differences in soil nitrogen dynamics, notably in the 

distributions of N2O fluxes and concentrations of inorganic soil nitrogen. These dynamics were not 

completely correlated to differences in nitrogen fertilization rates among systems, suggesting systems 

differed in their capacity to immobilize or transform exogenous nitrogen additions. Species level plant 

traits such as root morphology and symbiotic associations influence nitrogen uptake capabilities (Craine 

et al., 2002; De Vries et al., 2015), while at the system level plant species richness can reduce soil 

inorganic nitrogen concentrations (Oelmann et al., 2007; Palmborg et al., 2005). All of these factors 

contribute to differences among cropping systems in relationships between exogenous nitrogen inputs, 

nitrogen pools, and N2O emissions (Lu et al., 2011; Stehfest and Bouwman, 2006) 
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In a study of the switchgrass, native grass mix, and restored prairie at ARL in 2011 and 2012, 

Duran et al. (2016) found all forms of nitrogen loss were lower in diverse plant communities. Over time, 

these systems should accumulate organic nitrogen, either in soil organic matter or in belowground plant 

tissues, with unclear long-term consequences for nitrogen cycling. Soil properties such as texture and 

mineralogy may modify cropping systems effects (Pelster et al., 2011), potentially explaining our 

observation of site-level differences in cropping system responses. This interaction between cropping 

systems and soil properties will be of particular importance for predicting the performance of bioenergy 

feedstocks established on marginal soils, and as such merits further consideration.  

4.4.2 Environmental factors constrain N2O fluxes 

Our observation of the importance of soil nitrogen, WFPS, and temperature fits with the general 

understanding of N2O production in soils (Robertson and Vitousek, 2009). Nonetheless, this analysis 

produced some surprising results. Of these, the high intercepts observed with quantile regression were 

perhaps the most striking. Temperatures below 0 °C might be expected to severely restrict rates of 

microbial activity; this is an assumption we make when aggregating N2O emissions on an annual basis. 

Despite that, we observed fairly high fluxes at these temperatures as well as a relatively muted effect of 

increasing temperature, particularly at ARL. N2O fluxes from frozen soils, particularly in response to 

freeze-thaw events, have been reported elsewhere (Teepe et al., 2000), suggesting it may be inappropriate 

to discount wintertime microbial activity. Temperature sensitivity may differ for enzymes responsible for 

N2O production and consumption, potentially increasing N2O production at soil temperatures near 

freezing (Müller et al., 2003). The strength of the quantile regression was particularly evident in the 

relationship between WFPS and N2O fluxes at ARL. From the raw data, this appeared to be a log-linear 

relationship over the entire range of observed WFPS; this contrasts with frequent interpretations of this 

relationship, which posit that WFPS must exceed some threshold for denitrification as well as a peak in 

N2O production near field capacity, rather than near saturation (Hénault et al., 2005; Laville et al., 2011). 

Our findings suggest WFPS constrains N2O fluxes even at moisture contents associated with aerobic 

conditions. The high difference in intercepts between ARL and KBS likely results from differences in 
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matric potential, the mechanism Castellano et al. (2010) used to explain their observation of greater N2O 

fluxes at lower WFPS in more porous soils.  

 One of our more perplexing observations was the occurrence of relatively high N2O fluxes at 

minimal NO3
- levels. It has been suggested that NO2

-, rather than NO3
-, is the most important species for 

N2O production (Maharjan and Venterea, 2013). While our measurement of "NO3
-" concentrations 

reflects the sum of NO3
- and NO2

-, the latter is generally neglected due to its brief residence time in the 

soil (Butterbach-Bahl et al., 2013). NO2
- can be produced by both nitrification and denitrification 

(Butterbach-Bahl et al., 2013), with processes like nitrifier denitrification contributing significantly to 

N2O production under conditions that are not conducive to denitrification (Kool et al., 2011). We 

observed a significant effect of NH4
+ concentration on N2O flux upper limits as well as a marginal 

improvement of quantile regression models that included both NH4
+ and NO3

- over those containing only 

one or the other, all of which suggests nitrification may contribute to N2O fluxes in these systems. The 

strong and consistent effect of WFPS we observed appears to contradict this, as nitrification rates are 

thought to peak at intermediate soil moisture levels (Lehuger et al., 2009), although our findings in 

Chapter 5 suggest this may not be so clear-cut. The one thing that emerges with clarity from this is the 

importance of further understanding the importance of nitrification and NH4
+ concentrations on N2O 

production under conditions that are not conducive to denitrification.  

4.4.3 Environmental constraints on N2O fluxes differ by cropping system 

Cropping systems differed in their N2O flux responses to environmental constraints. These differences, 

however, did not align with our prior classification of ecological differences among systems. Contrast this 

to the patterns observed in N2O fluxes and NO3
- concentrations, whose distributions reflected differences 

in perenniality, plant species diversity, and fertilization management. The response to soil temperature 

gave the most ecologically-interpretable pattern: annual systems exhibited the strongest response while 

nonfertilized systems exhibited the weakest response. This matched the patterns of NO3
- concentration, 

and reflected the higher levels of nitrogen addition for the annual systems. Thus, greater nitrogen inputs 

led to higher soil NO3
- concentrations, which appear to have allowed N2O fluxes to respond more strongly 
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to increases in temperature. We anticipated this mechanism would also apply to moisture and nitrogen 

availability, but this did not prove to be the case. The different responses to moisture may have reflected 

enzymatic variability, as oxygen sensitivities for key denitrification enzymes may differ among systems 

(Cavigelli and Robertson, 2001). Similarly, the relationship between soil nitrogen concentrations and N2O 

production varies among systems (Lehuger et al., 2009), as does the proportion of nitrogen inputs that are 

emitted as N2O (Duran et al., 2016), leading us to expect different responses to nitrogen concentrations. 

The limited range of soil nitrogen concentrations we observed for many of our systems, notably 

nonfertilized ones, may have hampered our detection of system-specific responses. Prior research 

indicates that denitrification responds less strongly to nitrogen fertilization in nonagricultural systems 

than in agricultural ones (Lu et al., 2011), suggesting we might have observed greater differentiation 

among systems at higher soil nitrogen concentrations. These challenges illustrate a major limitation of 

observational studies, where fully sampling the parameter space may prove extremely difficult. Moreover, 

the uncertainty in many of our parameter estimates speaks to the exceptionally large volume of data 

required for this type of approach. 

 Multiple mechanisms could drive differences among cropping systems in their response to 

environmental factors. Soil pH exerts important, if frequently overlooked, influence on nitrification and 

denitrification (Cuhel et al., 2010; Oehler et al., 2010). Carbon available for microbial respiration fuels 

denitrification (Henry et al., 2008; Senbayram et al., 2012); perennial plants allocate far more carbon 

belowground and often engage in symbiotic relationships with soil microbiota, greatly increasing soil 

carbon availability (Warembourg and Estelrich, 2001). Nutrient limitation is thought to increase this 

dynamic (Bell et al., 2015). At the same time, microbial communities differ in their size, activity, and 

biochemistry. In particular, they may differ in the proportion of their denitrification that results in N2O 

rather than N2 (Domeignoz-Horta et al., 2015).  While the extent and source of these differences in 

microbial community properties remain unclear, this may be a mechanism by which cropping systems 

develop different responses to environmental constraints of N2O fluxes. 
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4.5 Conclusions 

Our study aimed to investigate differences among bioenergy feedstock cropping systems in their 

production of N2O and in their response to potential environmental constraints of this process. Cropping 

systems differed in their distribution of N2O fluxes and soil nitrate concentrations, with fertilization and 

annual crops generally increasing levels. Across all systems, soil temperature, WFPS, and concentrations 

of nitrate and ammonium all correlated to maximum N2O flux observations, suggesting these factors 

constrained N2O production. High fluxes occurred even at low substrate concentrations, temperature, and 

moisture. Responses to these constraints varied among cropping systems, implying N2O fluxes may differ 

among systems under a given set of conditions. Interpretation of our findings needs to be tempered by the 

limited range of variables measured for some systems, particularly nitrogen concentrations in 

nonfertilized systems. Nonetheless, this study illustrates environmental constraints over N2O fluxes and 

suggests responses to these constraints differ among bioenergy feedstock cropping systems. 
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Table 4.1 Number of N2O flux and environmental parameter measurements collected, by site and year 

Year Site N2O flux 

Soil 

nitrogen 

Soil 

temperature 

Water-filled 

pore space 

2009 ARL 692 — 684 663 

 KBS 495 — 483 447 

2010 ARL 887 640 834 864 

 KBS 499 301 316 351 

2011 ARL 925 820 922 875 

 KBS 634 456 486 483 

2012 ARL 1388 1254 1388 1320 

 KBS 594 431 460 456 

2013 ARL 1387 311 1386 1383 

 KBS 733 40 534 565 

2014 ARL 1334 130 1229 1194 

 KBS 1004 0 659 581 

Soil nitrogen measurement methods are incompatible between 2009 

and subsequent years. The number of treatments sampled expanded in 

2011 at KBS and 2012 at ARL. Frequency of nitrogen data collection 

was reduced beginning in 2013. Soil nitrogen data were collected in 

2014 at KBS but are not yet available.  
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Table S4.1 Crops and rotational phases for annual cropping systems, by year  

Year System Rotation Crop 

2009 G01 Continuous corn Corn 

 
G02 Corn-canola-soybean Soybean 

 
G03 Corn-canola-soybean Canola 

 
G04 Corn-canola-soybean Corn 

2010 G01 Continuous corn Corn 

 
G02 Corn-canola-soybean Canola 

 
G03 Corn-canola-soybean Corn 

 
G04 Corn-canola-soybean Soybean 

2011 G01 Continuous corn Corn 

 
G02 Corn-canola-soybean Corn 

 
G03 Corn-canola-soybean Soybean 

 
G04 Corn-canola-soybean Canola 

2012 G01 Continuous corn Corn 

 
G02 Continuous corn Corn (cover crop) 

 
G03 Corn-soybean Corn (cover crop) 

 
G04 Corn-soybean Soybean (cover crop) 

2013 G01 Continuous corn Corn 

 
G02 Continuous corn Corn (cover crop) 

 
G03 Corn-soybean Soybean (cover crop) 

 
G04 Corn-soybean Corn (cover crop) 

2014 G01 Continuous corn Corn 

 
G02 Continuous corn Corn (cover crop) 

 
G03 Corn-soybean Corn (cover crop) 

 
G04 Corn-soybean Soybean (cover crop) 

Cover consisted of rye and Austrian winter pea. 
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Table S4.2 Dates of annual nitrogen applications, by treatment 

  

Year 

Site Treatment 2009 2010 2011 2012 2013 2014 

ARL G01 11-Jun 7-Jun 28-Jun 7-Jun 28-Jun 16-Jun 

 

G02 

 

27-May 28-Jun 7-Jun 28-Jun 16-Jun 

 

G03 18-May 7-Jun 

 

7-Jun 

 

16-Jun 

 

G04 11-Jun 

 

27-May 

 
28-Jun 

 

 

G05 

 

27-May 27-May 11-May 30-May 5-Jun 

 

G06 

 

Replanted 27-May 11-May 30-May 5-Jun 

 

G07 

 

27-May 27-May 11-May 30-May 5-Jun 

 

G08 

 

21-Apr 

    

 

G09 18-May 27-May 27-May 11-May 30-May 5-Jun 

 

G10 

 

27-May 27-May 11-May 30-May 5-Jun 
        

KBS G01 22-Jun 15-Jun 13-Jun 11-Jun 12-Jun 18-Jun 

 

G02 

 

10-May 13-Jun 11-Jun 28-Jun 27-Jun 

 

G03 15-Jun 15-Jun 

 

11-Jun 

 

27-Jun 

 

G04 22-Jun 

 

20-May 

 
28-Jun 

 

 

G05 Replanted 10-May 18-May 4-May 16-May 23-May 

 

G06 22-Jun 10-May 18-May 4-May 16-May 23-May 

 

G07 Replanted 10-May 18-May 4-May 16-May 23-May 

 

G08 

 

1-Jun 

    

 

G09 15-Jun 10-May 18-May 4-May 16-May 23-May 

 G10 Replanted 10-May 18-May 4-May 16-May 23-May 

Bolded values indicate corn phases From2009-2011, G02-G04 were in a corn-soybean-

canola rotation. From 2012-2014, G02 was continuous corn with a cover crop, while G03-

G04 were a corn-soybean rotation with a cover crop. Soybean phases received no nitrogen 

fertilizer. 
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Figure 4.1 Effects of cropping system, site, and fertilization on distributions of N2O fluxes and 

concentrations of inorganic soil nitrogen. Values are plotted using an inverse hyperbolic sine (IHS) 

transformation. Boxplots give 25th, 50th, and 75th percentiles.



 
 

 

1
3

3
 

 
Figure 4.2 Quantile regression between soil N2O fluxes and environmental parameters. Lines indicate the quantile regression relationship between 

parameters at τ = 0.95, approximately reflecting the relationship that determines the 95th percentile of fluxes. Regressions were calculated 

independently for each environmental parameter. Flux data and soil inorganic nitrogen concentration data were inverse hyperbolic sine (IHS) 

transformed for regression and are presented on a transformed scale. Individual observations are partially transparent to illustrate observation 

density. All slope and intercept terms are significant at P < 0.05. 
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Figure 4.3 Cropping system-specific slopes for quantile regression of soil N2O fluxes and environmental 

parameters. Quantile regression was conducted at τ = 0.95. Crossbars indicate slope ± 1 s.e. (based on a 

kernel estimate). Slope denominators are unit changes in IHS-transformed NO3
- or NH4

+ concentrations, 

percentage points of WFPS, or °C of soil temperature. Corresponding intercepts are given in Figure 4.4. 
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Figure 4.4 Cropping system-specific intercepts for quantile regression of soil N2O fluxes and 

environmental parameters. Values approximate the 95th percentile of fluxes at environmental parameter 

values of 0, ± 1 s.e. (based on a kernel estimate). Corresponding slopes are given in Figure 4.3. 
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Figure S4.1 Effects of annual cropping system treatments on distributions of soil N2O fluxes and 

inorganic nitrogen concentrations. Treatment G01 consists of continuous no-till corn. From 2009 to 2011, 

treatments G02-G04 were phases of a corn-canola-soybean rotation; from 2012 onward G02 was 

continuous corn with a cover crop while G03-G04 were phases of a cover-cropped corn-soybean rotation. 

Values are IHS transformed.  
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Figure S4.2. Effects of cropping system, site, and fertilization on distributions of soil temperature and 

WFPS.  
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Figure S4.3. Relationship between soil NH4

+ and NO3
- concentrations. Lines are loess curves of second-

order polynomials with a span of 0.75, plotted by cropping system. 
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Abstract 

Soil microbial communities likely determine the inherent N2O production capacity of a system, but 

microbial roles may be more difficult to observe if environmental factors constrain N2O fluxes below this 

inherent capacity. We explored four possible estimators of inherent production capacity: aggregate annual 

emissions, peak flux events, and potential N2O production via nitrification (PNR) and denitrification 

(PDR), as estimated through recalibration of a N2O production model. Aggregate emissions differed 

among cropping systems and sites, with nitrogen fertilization generally, but not always, increasing 

emissions. Within cropping systems, we observed considerable interannual variability and occasionally 

high intraannual variability. Contrary to our expectations, the timing of peak flux events was not 

synchronized by fertilization schedules. Likewise, environmental conditions during peak flux events were 

not more favorable to N2O production than conditions at other times during the year. N2O production 

model recalibration was largely unsuccessful, generating uninformative posterior estimates of PNR and 

PDR for most samples in our dataset. Aggregate emissions and peak fluxes were highly correlated at both 

sites, suggesting both measures reflect inherent N2O production capacity. In contrast, PNR and PDR were 

uncorrelated to either. We used elastic net modeling to correlate these four estimators to microbial 

functional gene profiles. This approach explained a high proportion of variability in aggregate emissions 

but was nonsignificant for peak fluxes, PNR, and PDR. Functional genes retained by the model of 

aggregate emissions clustered in a small number of functional categories, and few were directly involved 

in nitrification or denitrification. These correlations indicate functional gene abundances may reflect 

factors that drive within-system variability in N2O emissions.  
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5.1 Introduction 

The driving goal of this research project has been to link bioenergy feedstock cropping systems, soil 

microbial communities, and variability in N2O production. In Chapter 3, we explored how microbial 

functional gene profiles differed among the systems of the Bioenergy Cropping Systems Experiment 

(BCSE). While we found cropping system effects, they were inconsistent and maintained considerable 

variability among the replicate plots of a system. What effects there were weakly influenced the overall 

abundance profile, rather than exerting stronger influences on a subset of genetic functions. In Chapter 4, 

we explored how environmental conditions, such as inorganic nitrogen concentrations, soil moisture, and 

temperature, influenced N2O fluxes. We found these factors defined upper limits for N2O fluxes, with 

some variation among cropping systems in the nature of this limit. While our analysis in both chapters 

emphasized cropping system effects, we consistently found considerable plot-level variation in both 

microbial community composition and N2O flux dynamics. In this chapter, we focus more on plot-level 

dynamics, and in particular on the connection between plot-level variability in soil microbial communities 

and N2O production. 

 Soil microbes are both essential to N2O production and potentially unnecessary for capturing its 

variability. Virtually all soil N2O results from microbially-mediated processes, predominantly nitrification 

and denitrification (Butterbach-Bahl et al., 2013). N2O production can be dramatically reduced by 

inhibiting these processes directly (Severin et al., 2016) or by inhibiting microbial growth in general 

(Mothapo et al., 2013). Despite this, N2O production can be modeled with reasonable success without 

incorporating microbial data (Giltrap et al., 2010; Oehler et al., 2010), and incorporating microbial 

information may not improve empirical models (Graham et al., 2014). Part of this disconnect may reflect 

the rarity with which microbial activity limits actual N2O production rates. Both nitrification and 

denitrification respond strongly to substrate availability, moisture, and pH (Booth et al., 2005; Cuhel et 

al., 2010). Variation in these environmental factors can be sufficient to explain variation in N2O 

production, rendering microbial community characteristics redundant (Attard et al., 2011). At the same 

time, denitrification gene transcriptional activity can be linked to N2O production rates (Harter et al., 
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2014). Microbial effects are often more visible in properties such as potential denitrification (Morales et 

al., 2010), N2O consumption capacity (Jones et al., 2014), or the proportion of N2O in denitrification 

products (Domeignoz-Horta et al., 2015). These properties may be more indicative of the inherent N2O 

production capacity of a system than of its production at a specific point in time, possibly allowing 

detection of microbial influences past the obscuring effects of more proximal environmental drivers 

(Wallenstein et al., 2006). 

 Inherent, microbially-influenced, capabilities may be a particularly useful property in the context 

of process-based N2O production models. Generalized models capable of reflecting N2O production 

dynamics across a broad range of environments are highly desirable (Blagodatsky and Smith, 2012), but 

at present models generally need to be calibrated to a specific cropping system, or even a specific region 

(Chen et al., 2008). This might be reduced through improved understanding and depiction of factors such 

as microbial activity that underlie system-specificity of behaviors. Many of extant N2O models lack an 

explicit framework for incorporating differences in microbial physiology (compare to Wieder et al., 

2014), but include properties such as potential denitrification and N2:N2O production ratios (Butterbach-

Bahl et al., 2013) which could provide a platform for incorporating microbial community information. 

For this work, we focused on the nitrous oxide emissions module (NOE) of the CERES model (Hénault et 

al., 2005). NOE lacks the complexity of more recent models, but only requires information on soil 

temperature, water-filled pore space (WFPS), and concentrations of ammonium (NH4
+) and nitrate (NO3

-

), overlapping perfectly with the environmental parameters we measured alongside N2O fluxes (Chapter 

4). Moreover, the authors of the model have published a study where they recalibrated key model 

parameters to fit differences among field sites (Lehuger et al., 2009). NOE employs terms that reflect 

potential N2O production from denitrification and from nitrification, providing a framework by which we 

could estimate these properties and then relate them to functional gene abundance profiles.  

 The experiment in this chapter consisted of two steps. First, we attempted to estimate inherent 

single-year N2O production capabilities at the plot-year level. These estimates reflected the combination 

of potential nitrification/denitrification rates and N2O production ratios, both of which have previously 
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been linked to microbial functional gene abundances (Domeignoz-Horta et al., 2015; Morales et al., 

2010). We also calculated plot-level aggregate annual N2O emissions, having found in Chapter 2 that 

these correlated to functional gene profiles, at least in the corn (Zea mays L.) system. Finally, we 

identified peak N2O flux events, which the constraint-based relationships we identified in Chapter 4 

suggested would indicate the best conditions for N2O production during the year. N2O production during 

high-flux events has previously been linked to denitrification gene expression (Németh et al., 2014), 

suggesting this may be another metric that reflects microbial community influence. After generating and 

analyzing these four estimators, we attempted to link them to functional gene profiles via elastic net 

modeling, largely replicating the approach presented in Chapter 2. Through this effort, we attempted to 

determine whether soil microbial gene abundance patterns reflected within-system variability in estimates 

of inherent N2O production capacity.  

5.2 Methods 

5.2.1 Datasets 

We used the N2O flux and environmental parameter dataset described in Chapter 4 and the microbial 

functional gene profile dataset described in Chapter 3. Environmental data consisted of N2O flux point 

measurements collected from Arlington Agricultural Research Station in Wisconsin (ARL) and W.K. 

Kellogg Biological Station in Michigan (KBS) from 2009 to 2014 (see any of the preceding chapters for 

descriptions of site history and agronomic management). Fluxes were estimated using static chambers, as 

described in Oates et al. (2016). For many of these flux measurements, we had accompanying data on 

ammonium (NH4
+) and nitrate (NO3

- ) concentrations, water-filled pore space (WFPS), and soil 

temperature. While WFPS and temperature were measured systematically throughout the study period, 

nitrogen data were collected beginning in 2010 at both sites, with a sharp decrease in sampling frequency 

in 2012 at KBS and 2013 at ARL. Microbial data were collected from 2010 to 2012 at ARL and in 2012 

at KBS. Field data are archived in the GLBRC Sustainability Data Catalog 

(https://data.sustainability.glbrc.org/), while microbial data are available through the Integrated Microbial 

Genomes database (https://img.jgi.doe.gov/m, with identifying information in Table S3.1). A site-level 

https://data.sustainability.glbrc.org/
https://img.jgi.doe.gov/m
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breakdown of the number of observations with environmental and microbial data is presented in Table 

5.1.  

5.2.2 Analysis 

All analyses were conducted in the R statistical environment (v3.3.0, R Core Team, 2016). Graphics were 

generated with the 'ggplot2' package (v2.1.0, Wickham, 2009), and used default settings for boxplot and 

smoothing summaries. 

5.2.2.1 Aggregate annual emissions 

Aggregate annual emissions were calculated by linear interpolation (Oates et al., 2016): 

∑
𝐹𝑦,𝑡 + 𝐹𝑦,𝑡+1

2

𝑦,𝑇

𝑡=0

(𝐷𝑦,𝑡 − 𝐷𝑦,𝑡+1) 

In year y, T flux events were sampled, where Fy,t is the flux and Dy,t is the date of sample t. Dy,0 

corresponds to the last day before Dy,1 where soil temperature was < 0 °C, while Dy,T+1 corresponds to the 

first day after Dy,T where soil temperature was < 0 °C. Both Fy,0 and Fy,T+1 were assumed to be 0. If 

temperatures never dropped below 0 °C between Dy,T and Dy+1,1,  Dy,T and Dy+1,0 were taken as 

December 31 and January 1 of their respective years, while their fluxes were the time-weighted average 

of Fy,T and Fy+1,1. 

 There are limitations to this approach. There are indications that N2O fluxes may not transition 

linearly over the two-week time period typically used in our study (Molodovskaya et al., 2012), 

potentially leading to overestimate of aggregate fluxes. Linear interpolation is nonetheless regularly used 

in the field, and we are unaware of a validated alternative method. Our measurements outside of the 

growing season were limited, particularly in the earlier years of the experiment. In the absence of 

measurements, we assumed there were no N2O fluxes when soil temperatures were < 0 °C, although our 

findings from Chapter 4 indicate this to be otherwise. Alternative assumptions of unobserved fluxes 

outside of the growing season minimally impacted aggregate emission rank orders, leading us to continue 

employing the approach with the least complicated assumptions.  
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5.2.2.2 Peak fluxes 

Based on our findings in Chapter 4, we expected that peak fluxes would occur on days with the fewest 

environmental constraints on N2O production. Moreover, we expected that plots within a cropping system 

should experience similar environmental conditions on a given date. In particular, the timing of fertilizer 

application is thought to be important (Laville et al., 2011) and was taken into consideration (Table 5.2). 

We looked at dates on which peak fluxes occurred as dates on which all plots in a cropping 

system would be expected to have high N2O fluxes. For the actual peak flux from a plot, we calculated an 

average of fluxes from that plot during peak flux days for its cropping system, weighted by the number of 

plots that peaked on a given date: 

∑
𝐹𝑑𝑁𝑑

𝑃

𝐷

𝑑=1

 

More than one plot in a system could experience a peak flux event on a given day, thus the number of 

unique dates with peak flux events, D, would be less than or equal to the total number of plots, P. Flux Fd 

was recorded for the plot on day d, on which Nd plots from that system recorded peak fluxes.  

5.2.2.3 N2O emissions model calibration 

This analysis was based on the NOE Bayesian model recalibration of Lehuger et al. (2009). In the NOE 

model, N2O fluxes from nitrification and denitrification are calculated independently, then summed. N2O 

production from each process is calculated as a product of the maximum potential rate (PN, PD), the ratio 

of N2O produced by each process (RN, RD), and constraints based on nitrogen substrate concentrations 

(NN, DN), soil moisture (NW, DW) and temperature (NT, DT): 

𝑁2𝑂 = 𝑃𝑁𝑅𝑁𝑁𝑁𝑁𝑊𝑁𝑇 + 𝑃𝐷𝑅𝐷𝐷𝑁𝐷𝑊𝐷𝑇 

 In the original framework, rate potentials and N2O proportions are determined empirically 

through laboratory assays (Hénault et al., 2005), whereas we needed to treat these terms as parameters to 

be calibrated. As we had no means of calculating potential rates and N2O ratios separately, we calculated 

their product (PNR, PDR), which we interpreted as the maximum rate of N2O production via nitrification 

and denitrification respectively. Our prior distribution for PDR was based on the maximum value of PDRD 
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reported in Hénault et al (2005). Their largest value was 5,640 g N ha-1 day-1, which we rounded to 10,000 

g N ha-1 day-1 to increase the likelihood that our prior distribution contained any plausible true PDR value 

(Table 5.3). We used a similarly conservative estimate that PNR would not exceed 10% of PDR, 

following Matthieu et al. (2006). 

 We calculated the nitrogen constraint identically to NOE, as a Michaelis-Menten relationship 

between nitrogen concentration and a half-saturation constant (NKM, DKM, units and priors for all fitted 

parameters given in Table 5.3): 

𝑁𝑁 =
[𝑁𝐻4

+]

𝑁𝐾𝑀 + [𝑁𝐻4
+]

,  𝐷𝑁 =
[𝑁𝑂3

−]

𝐷𝐾𝑀 + [𝑁𝑂3
−]

  

 In the NOE model, NT is calculated as a simple Q10 relationship, while DT is calculated as two 

separate Q10 relationships, with a strong response below ~10 °C and a weaker response above that. Due to 

our inability to handle discontinuous functions (see below), and the relatively small effect this had on 

relationships (Lehuger et al., 2009), we used the same general function for both NT and DT: 

𝑁𝑇 = exp [
(𝑇 − 20) log 𝑁𝑄10

10
] , 𝐷𝑇 = exp [

(𝑇 − 20) log 𝐷𝑄10

10
] 

 We made the most drastic modifications to the soil moisture constraints. In NOE, the constraint 

for denitrification is a power relationship with a cutoff at 40-80% WFPS below which denitrification is 

held to be nonexistant. Once again, we needed to avoid discontinuity, and given the significant 

contribution of denitrification to N2O production at low WPFS (Bateman and Baggs, 2005), we modeled 

this relationship more conservatively as an exponential function with a parameter governing the 

curvature: 

𝐷𝑊 = exp[(𝑊𝐹𝑃𝑆 − 1)𝐷𝑊𝐴] 

The constraint for nitrification required even greater alteration. NOE models this through three terms: 

upper and lower WFPS bounds, outside of which nitrification does not occur, and an optimal WFPS, with 

linear slopes connecting the three points. We approximated this using the probability density function of 

the beta distribution, rescaled to give a maximum value of 1: 
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𝑁𝑤 =  (
𝑊𝐹𝑃𝑆𝑁𝑊𝐴−1(1 − 𝑊𝐹𝑃𝑆)𝑁𝑊𝐵−1

𝐵(𝑁𝑊𝐴, 𝑁𝑊𝐵)
) (

𝑁𝑊𝐴 + 𝑁𝑊𝐵 − 2

𝑁𝑊𝐴 − 1
) 

We constructed this model using the Stan language and framework as implemented in the 'rstan' 

R package (Carpenter and et al., n.d.; Hoffman and Gelman, n.d.; Stan Development Team, 2015). Stan 

differs from other Bayesian modeling software (e.g. BUGS, JAGS) in its use of a No-U-Turn Sampler 

(NUTS) implementation of Hamiltonian Monte Carlo (Hoffman and Gelman, n.d.). This has the benefit of 

dramatically reducing the number of iterations needed to appropriately sample the posterior distribution, 

but also requires continuous functions for its gradient calculations, leading to our need to diverge from the 

NOE model formulation. To increase our precision, we calculated logarithms for the constraints, summed 

them, then exponentiated to model the contributions of nitrification and denitrification. Errors were 

modeled as independent and identically-distributed draws from a normal distribution with a single, site-

level variance term. In contrast to most analyses in this project, N2O fluxes were not transformed prior to 

analysis, as NOE purports to estimate actual flux values. 

 Individual observations with negative N2O fluxes (NOE does not accommodate N2O 

consumption) or missing environmental data were removed. Only plots with ≥5 valid observations were 

included in the analysis, with the total number of observations and plot-years given in Table 5.1. A ceiling 

of 1.0 was set for WPFS values, while floors had been previously set for soil nitrogen concentrations 

(Chapter 4). Each site was modeled separately. PDR and PNR were calculated at the plot level, while all 

other parameters were calculated at the site level. Model sampling consisted of 4 separate chains, each 

with 2000 iterations, of which 500 were discarded as warm ups, for a total of 6000 observations.  

5.2.2.4 Elastic net modeling 

Our elastic net modeling approach used the 'glmnet' package (v2.0-5, Friedman et al., 2010), largely 

replicating our approach from Chapter 2. Because of the larger size of this dataset (Table 5.1), leave-one-

out cross-validation was intractable. Instead, we used 14-fold cross-validation, removing 2 samples per 

fold at KBS and 4 to 5 samples per fold at ARL. For each model we conducted 20 independent cross-

validations and used the mean ‘lambda.1se’ value as the regularization parameter. Permutation 
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maintained intact cropping system and year structures. Thus, the marginal effect of the model relative to 

permuted data reflected explanation of plot-level variability. Potential terms for the model included 

individual cropping systems, distinguishing between fertilized and unfertilized versions of the same 

system, individual years (only relevant at ARL, Table 5.1), and a term for the estimated copy number of 

individual clusters of orthologous groups (COGs, Galperin et al., 2015; Tatusov et al., 2003). Interactions 

among these terms were not included. We computed models for the full range of alpha values, including 

both the ridge regression (alpha 0.0) and lasso (alpha 1.0) extremes (Zou and Hastie, 2005).  

5.3 Results and Discussion 

5.3.1 Dataset description 

Our dataset contained 10,679 measurements of soil N2O fluxes recorded over 6 years (Table 5.1). The 

basic sampling unit was a plot measured over the course of a single year (plot-year), with 759 plot-years 

represented in our dataset. The N2O emissions model recalibration dataset (Section 3.4) comprised 38% 

of our total observations, with 319 plot-years each having 6 to 19 measurements (median 13.5). Our 

dataset for elastic net modeling (Section 3.6) was further constrained by availability of microbial data, 

limiting us to 132 plot-years. We compared distributions of N2O fluxes and environmental parameters 

between observations with full environmental and microbial data to those with missing data (Fig. 5.1). 

Both sets effectively overlapped for ARL, while at KBS the more constrained dataset had slightly lower 

WFPS and slightly higher temperature and NH4
+ concentrations. We only collected microbial data from 

KBS in 2012, a year with an abnormally warm spring and severe drought (Oates et al., 2016; Sanford et 

al., 2016). This likely directly caused higher temperature and lower WFPS, while the reduced 

precipitation and soil moisture may have inhibited NH4
+ movement, leading to higher concentrations. 

Nonetheless, as these deviations were relatively minor, it appears the data we used for model recalibration 

and elastic net modeling were likely representative of the full dataset.  

5.3.2 Aggregate annual emissions reflect cropping system effects despite high plot-level variability 

We linearly interpolated N2O fluxes to aggregate them into plot level annual emissions. Emissions 

differed substantially among cropping systems, sites, and fertilizer managements (Fig. 5.2). Emissions 
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distributions from ARL exceeded those from KBS for all systems except the fertilized native grass and 

nonfertilized restored prairie which were similar at both sites. The continuous corn (G01) and the corn 

phase of the rotational system (G03) produced unusually high N2O emissions at both sites in 2010, while 

emissions from fertilized switchgrass (Panicum virgatum L.) at ARL were lower in 2009 than in 

subsequent years (Fig. 5.3). Thus, our report of emissions trends based on data from 2009-11 

overestimated N2O emissions from annual systems and underestimated emissions from switchgrass at 

ARL (Oates et al., 2016), which in the longer-term dataset did not differ from annual systems. The 

switchgrass system at ARL experiences higher rates of nitrogen loss, notably fertilizer-induced N2O 

emissions, relative to the native grass mix and restored prairie (Duran et al., 2016). As a monoculture, the 

switchgrass system likely has a narrower time window for peak nitrogen uptake than more diverse 

systems (Oelmann et al., 2007; Palmborg et al., 2005); it may thus be more difficult to match nitrogen 

applications to the timing and amount of plant demand.  

 The peculiar behavior of the poplar (Populus nigra × P. maximowiczii) system merits 

explanation. At both sites, this system was fertilized once, in 2010 (Table 5.2), likely resulting in the 

progressive decline in N2O emissions observed at KBS. The uptick in 2014 coincides with plant 

coppicing, which likely resulted in release of plant carbon and nitrogen and a temporary decrease in plant 

uptake. The persistently high N2O emissions at ARL likely reflect the effects of a Marssonina spp. leaf 

fungus that infected the plants in 2010. This dramatically reduced accumulation of plant biomass in 

subsequent years (Sanford et al., 2016), and likely curtailed nitrogen uptake.  

 Though significant, cropping system effects were small relative to interannual, and occasionally 

intraannual, variability (Fig. 5.3). The within-system variability we observed underscored the extent to 

which N2O production capabilities might differ, even among the plots of a cropping system.  

5.3.3 Plot level annual peak flux events were not restricted by environmental conditions or fertilizer 

timing 

We expected the variability in aggregate emissions should reflect similar patterns in environmental 

drivers of N2O production. We expected this would be particularly evident during extremely high 
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magnitude flux events (Molodovskaya et al., 2012; Németh et al., 2014). Precipitation events occurring 

shortly after fertilization seemed likely to generate the highest fluxes recorded during a year (Laville et 

al., 2011), with accompanying high levels of soil nitrogen, moisture, and temperature, as per our findings 

in Chapter 4. When we looked at the dates on which these peak flux events occurred, however, we found 

they were frequently dispersed throughout the year (Fig. 5.4). In some cases, e.g. KBS in 2013 and 2014, 

many peak flux events followed fertilization events, but much more frequently we encountered large 

numbers of events prior to fertilization or several months afterward. The strongest example of event-

driven synchronization of flux peaks occurred in 2012, where a late July precipitation, the first major one 

of the growing season, resulted in the highest fluxes observed from nearly all systems, including those 

receiving no fertilization. Increases in N2O production are common when rewetting follows a drought 

(Guo et al., 2014), but the severity of this drought speaks to the magnitude of event required for this 

degree of synchronization.  

 While peak flux timings were only weakly determined by major field events, we reasoned that 

peak fluxes might still require near-ideal environmental conditions. To that end, we contrasted 

distributions of environmental parameters observed during peak flux events to those observed at all other 

times (Fig. 5.5). Non-peak fluxes from some years were higher than peak fluxes from others; thus while 

N2O fluxes were generally higher during peak flux events, there was still overlap between the 

distributions. Overlap was much higher for other environmental variables. At ARL, WFPS during peak 

flux events tended toward the upper end of the distribution, but this was not the case at KBS. For some 

systems, the distribution of soil nitrogen concentrations was shifted higher during peak flux events 

relative to other times of year, while for others like the fertilized switchgrass at ARL the two distributions 

were indistinguishable. It may be that while individual terms were not that different from the norm, on 

peak flux days all parameters were near the upper end of their distribution, raising the upper limit for N2O 

production (Chapter 4). Conditions leading up to a flux event may also matter. For instance, rewetting 

events after a drought, like those observed in 2012, affect microbial activity in ways that differ 
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qualitatively from moisture-activity relationships under a more consistent moisture regime (Lawrence et 

al., 2009; Li et al., 2010). Such interactions might not  

5.3.4 Predicting potential nitrification-/denitrification-derived N2O production through model 

recalibration 

We attempted to recreate the NOE model Bayesian recalibration described by Lehuger et al. (2009), with 

the modifications described in Section 2.2.3. We estimated the potential for N2O production from 

nitrification (PNR) and denitrification (PDR) at the plot-year level, while calibrating other parameters at 

the site level (Table 5.3). We successfully generated informative posterior distributions for all site-level 

parameters (Fig. 5.6). However, many parameters pushed up against the edge of their prior ranges, e.g. 

DKM and DWA at ARL) indicating their true value was likely outside of the pre-defined range and 

indicating that our prior assumptions about their possible values was incorrect. This interpretation is 

reinforced by inspection of the results reported by Lehuger et al. (2009), who report multiple instances of 

parameters whose posterior distribution abutted the limits of their priors. Moreover, a large number of 

their parameters yielded uninformative posterior distributions, similar to what we observed for NQ10 at 

ARL and DKM at KBS. This suggests the model we used may not be well specified for reflecting the 

dynamics in our dataset.  

 The model-derived estimates of environmental constraints over N2O production suggested 

extremely dissimilar responses to environmental conditions between our study sites. The model indicated 

that nitrification was the dominant process at KBS (Fig. 5.6, right panels). The moisture constraint over 

denitrification, DW, was miniscule over the range of WFPS values observed at KBS, while NW, the 

constraint over nitrification, exhibited considerable variation over that range. The miniscule NKM estimate 

indicates nitrification at KBS was limited by soil moisture and temperature, but not NH4
+ concentrations. 

The apparent irrelevance of NH4
+ may agree with our findings in Chapter 4, where the effect of NH4

+ 

concentrations on upper bonds of N2O production could not be separated from their correlation to NO3
-. 

These results also likely overstate the extent to which low soil moisture inhibited denitrification at KBS, 

as research suggests soil matric potential may be more important to determining N2O production 
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(Castellano et al., 2010). At ARL, similar soil moisture relationships were modeled for nitrification and 

denitrification. This runs counter to the general understanding of the two processes, which holds that 

nitrification occurs best near field capacity (Bateman and Baggs, 2005). The model further posited 

extremely high saturation constants for both NH4
+ and NO3

-, suggesting that even at the high levels we 

observed both nitrification and denitrification were significantly substrate-limited.  

 The relationships described by this model should likely be treated with considerable skepticism, 

particularly in light of the limited extent to which the model captured N2O flux variability within 

individual plots (Fig. 5.7). Plot-level root mean squared error (RMSE) appeared to reflect the magnitude 

of fluxes observed, rather than how well the model reflected their dynamic variability. The recalibrated 

models in Lehuger et al. (2009) showed similar issues, consistently underestimating large flux events. The 

NOE model is designed to reflect long-term emissions dynamics rather than individual fluxes (Hénault et 

al., 2005), likely explaining many of these shortcomings and leaving the smallest ray of hope that it may 

serve to estimate meaningful inherent capacities.  

 Alas, estimation of PNR and PDR was no more successful than any other aspect of the process 

(Fig. 5.8). For the majority of plots, posterior estimates of PDR and PNR were completely uninformative. 

Results were particularly stark for denitrification at KBS, likely because the miniscule DW values rendered 

PDR values irrelevant to the final flux estimate. Nonfertilized systems at ARL also gave largely 

uninformative posteriors, possibly reflecting the limited range of fluxes and soil nitrogen conditions we 

observed for them (Fig. 4.1). We did observe considerable variation in PDR for fertilized systems at ARL, 

notably annual systems, switchgrass, and miscanthus (Miscanthus × giganteus), as well as in PNR for 

many systems at KBS. Curiously, there was no systematic variation among systems; instead, plots within 

some systems captured the entire range of the parameters. In aggregate, it seems likely that the PDR 

parameter at ARL and the PNR parameter at KBS provided a mechanism for accommodating plot-years 

with exceptionally large fluxes while largely ignoring systems whose fluxes hovered at more normal 

levels. It is difficult at this point to interpret the NOE model recalibration approach we attempted here as 
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anything other than a failure. However, we included PNR and PDR in the subsequent analysis, if only in 

the spirit of scientific inquiry. 

5.3.5 Aggregate N2O emissions strongly correlated to peak fluxes but not to PDR or PNR 

The existence of an inherent, plot-level capacity for N2O production formed a central tenet of the analyses 

undertaken in this chapter. The metrics we explored in the previous three sections were all attempts to 

estimate this capacity. We would thus expect them to correlate to the extent that they reflect similar 

aspects of their systems. We observed correlation between aggregate annual emissions and peak fluxes, 

neither of which correlated significantly to PDR or PNR (Fig. 5.9, PDR and PNR correlations to peak 

fluxes not shown). Prior studies have noted that short-duration, high-intensity flux events contribute 

significantly to aggregate emissions and to their variability (Molodovskaya et al., 2012; Németh et al., 

2014). Despite this, we were unprepared for the strength and generality of this relationship. The influence 

of peak flux events varies greatly among plots and treatments in our dataset; even the tiny subset from 

Fig. 5.7 reflects the variety of forms annual flux profiles can take. In our previous analysis of these 

systems, we found the relative magnitude and importance of peak fluxes varied among cropping systems, 

with more prominent and influential peaks in fertilized, annual systems than polycultural and unfertilized 

ones (Oates et al., 2016). This could have resulted in a relationship driven primarily by differences among 

cropping systems, rather than the within-system relationship we observed (Fig. 5.9). It is worth reflecting 

on the many assumptions folded into aggregate emissions estimates (Section 2.2.1) as well as the myriad 

factors influencing the flux we observe during a peak, including short and long term environmental 

contexts and even a degree of stochasticity in the actual date of sampling. That we see a relationship that 

is consistent through differences in management, site conditions, and annual weather patterns suggests 

both of these metrics may reflect some more fundamental cropping system property. 

5.3.6 Elastic net modeling relates functional gene profiles to variability in aggregate N2O emissions  

Having generated four estimators of inherent plot-level N2O production capacity, we used elastic net 

modeling to evaluate whether they mapped onto aspects of soil microbial functional gene profiles. Given 

the consistent qualitative differences we observed between ARL and KBS, we analyzed the sites 
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separately. The set of potential predictors for these models included terms for cropping systems, years, 

and estimated copy numbers of clusters of orthologous groups (COGs, details in Section 2.2.4). At both 

sites, we were most successful in modeling aggregate emissions, where they could explain over 75% of 

the variability in aggregate emissions (Fig. 5.10). Despite the strong correlation between aggregate 

emissions and peak fluxes (Fig. 5.9), the latter were not as easily modeled with this approach. At ARL, 

PDR was actually better-modeled than peak fluxes, although PNR at ARL and both metrics at KBS 

produced effectively null models.  

 In elastic net modeling, the alpha parameter determines the tradeoff between ridge (alpha=0) and 

lasso (alpha=1) penalization terms. The distinction can be generalized as a tradeoff between retention of 

all terms with heavy shrinkage of their coefficients in ridge regression and the retention of a limited 

number of terms with lower shrinkage in lasso (Friedman et al., 2010; Zou and Hastie, 2005). The effect 

of alpha differed by site and response variable. Aggregate emissions at ARL and peak fluxes at KBS were 

largely insensitive to alpha values (Fig. 5.10). In contrast, aggregate emissions modeling at KBS 

improved with alpha, while dropping alpha from 0 to 0.2 substantially decreased peak flux model quality 

at KBS. For alpha ≥ 0.5, the number of terms remained relatively constant for most models. These 

responses contrast with the results we obtained from the ARL corn system in Chapter 2, where we found 

that increasing alpha above 0.5 substantially decreased both model performance and the number of 

parameters retained. The differences with Chapter 2 and between sites in this analysis may reflect the 

relative number of observations for each analysis, where a larger dataset may reduce sensitivity to the 

particulars of the modeling process.  

 We used permutation tests to evaluate model performance and guard against overfitting. Of 

particular concern was the risk of the microbial data simply replicating system-level differences (Fig. 5.2, 

Fig. 5.5), via cropping system differences in functional gene profiles (Chapter 3). We included terms for 

cropping systems and years to provide a mechanism for expressing that variability, but also restricted 

sample permutations to occur within cropping system and year. Thus, cropping system means for the 

response variables were identical for our real data and all permutations; the only differences occurred 
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within cropping systems. Thus, the differences between our actual model results and results from 

permuted data reflect the extent to which plot-level variability in functional gene profiles reflected plot-

level variability in estimators of N2O production capacity. By this metric, functional gene data 

substantially improved modeling of plot-level variability in aggregate emissions for high values of alpha 

at KBS and for all values of alpha at ARL (Fig. 5.10). In contrast, the models built to predict peak fluxes 

from both sites and PDR at ARL performed comparably to results obtained without a plot-level linkage 

between microbial community data and response variables. From this, we conclude that functional gene 

data only contributed to modeling plot-level variability of aggregate emissions. 

 Models of aggregate emissions at ARL and KBS retained few non-microbial terms. At ARL, the 

exceptions included specific terms for nonfertilized prairie and fertilized corn, whose emissions were 

systematically lower and higher than those from continuous corn, respectively. At KBS, the only cropping 

system term retained was poplar, with lower emissions than the continuous corn baseline. All three terms 

were retained at all alpha values. As in Chapter 2, all year terms were dropped. The terms retained reflect 

unusual behaviors noted in Section 3.2: at ARL, N2O emissions were higher in switchgrass than in other 

fertilized perennial crops while emissions from KBS poplar and ARL nonfertilized prairie were among 

the lowest from any system in (Fig. 5.3). It should be noted that multiple COG terms were retained 

alongside the cropping system terms, indicating emissions from these systems differed from what their 

microbial communities would predict. Switchgrass appears to possess unusual and undesirable nitrogen 

cycling properties relative to other perennial systems grown at ARL: it emits more N2O than other 

systems (Section 3.2), emits a higher proportion of fertilizer nitrogen as N2O than the restored prairie or 

native grass mix (Duran et al., 2016) its N2O fluxes respond differently to environmental drivers than 

those from virtually every other system (Oates et al., 2016), and it displayed slower nitrogen resorption 

and reduced resorption proficiency relative to prairie (Jach-Smith and Jackson, 2015). Switchgrass 

performs like a typical perennial system at KBS, indicating this is not a species-level issue; it is unclear 

whether the undesirable performance of switchgrass at ARL stems from a mismatch to soil or other 

growing conditions at the site, or reflects issues with its establishment. 
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 In addition to the cropping system terms, aggregate annual emissions models retained 46 to 38 

COGs as terms at ARL and 19-15 at KBS (at alpha from 0.5 to 1). At alpha=1, all COGs retained at KBS 

belonged to one of six function categories at KBS and only four categories at ARL (Fig. 5.11). Two 

denitrification-associated COGs were retained in the KBS model: COG5013, the nitrate reductase α 

subunit, retained at alpha≤0.2, and COG1140, the nitrate reductase β subunit, retained at all alpha levels. 

By contrast, ARL models at alpha≥0.2 lacked any COGs from function category P, which contains genes 

involved in inorganic ion transport and metabolism, including all genes directly involved in nitrification 

and denitrification.  

It is important not to over-interpret this observation. At higher alpha levels, individual terms are 

retained from groups of correlated parameters, with limited discrimination of which term is retained 

(Helbling et al., 2015). As noted in Chapter 2, terms with limited relevance in an elastic net model may 

correlate directly to the response variable. This lack of clarity in the importance of whether individual 

parameters are dropped or retained may reduce the utility of elastic net modeling to identify mechanisms 

by which the relationships it identifies operate. Moreover, we characterized microbial functional 

capabilities simply based on gene abundance, whereas other studies suggest variation in N2O production 

may be due to physiological differences among microorganisms (Cavigelli and Robertson, 2001; Yoon et 

al., 2016) or to differences in gene ratios (Palmer et al., 2012; Philippot et al., 2011). Gene expression 

might provide a better link to microbial activity than gene abundance, but this expression would have to 

be recorded during conditions that approximated inherent production capabilities (e.g. Uchida et al., 

2014). Our study does not serve to establish a causal link between microbial community properties and 

N2O production, but we demonstrate that the substantial plot-level variability is, in some way, related. 

5.4 Conclusions 

We explored four plot-level estimators of inherent N2O production capacity which we attempted to relate 

to microbial functional gene abundance profiles. Bayesian recalibration of the NOE N2O production 

model failed to generate informative or credible estimates of potential N2O production by nitrification and 

denitrification. Aggregate annual emissions and peak annual fluxes, two estimators based on empirical 
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measurements, correlated strongly to each other despite many potential sources of divergence, and as such 

may reflect underlying plot-level properties. Despite this correlation, aggregate emissions proved easier to 

model from functional gene abundance data using elastic net modeling, suggesting the two estimators 

differ slightly in the system properties they reflect. Models were quite good at capturing variability of 

plots within cropping system, and did so using genes from relatively few different function categories. 

Genes involved in denitrification were included in the models for KBS, but no nitrogen cycle genes were 

included in models for ARL. Overall, our findings strongly suggest a relationship between plot-level 

variabilities in aggregate N2O emissions and microbial functional gene abundance profiles, although this 

relationship may not rest on differences in the microbial community’s genetic capacity for N2O 

production and consumption. 
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Table 5.1 Number of environmental data observations and samples for different levels of data 

completeness 

 

ARL KBS 

 

Obs. Samples Years Obs. Samples Years 

Full dataset 6689 416 2009-14 3990 343 2009-14 

All field data 2685 207 2010-13 1017 112 2010-12 

Field + microbial data 1534 105 2010-12 276 27 2012 

A sample is defined as a plot measured over a year.  Measurements with full field data 

have N2O flux, ammonium/nitrate concentration, water-filled pore space, and soil 

temperature data and came from a sample with a minimum of five measurements. 
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Table 5.2 Nitrogen fertilizer application dates  

 

 

 

Year 

Site Code System 2009 2010 2011 2012 2013 2014 

ARL G01 C. Corn 11-Jun 7-Jun 28-Jun 7-Jun 28-Jun 16-Jun 

 

G02 Rotation 

 

27-May 28-Jun 7-Jun 28-Jun 16-Jun 

 

G03 Rotation 18-May 7-Jun 

 
7-Jun 

 
16-Jun 

 

G04 Rotation 11-Jun 

 

27-May 

 
28-Jun 

 

 

G05 Switchgrass 

 

27-May 27-May 11-May 30-May 5-Jun 

 

G06 Miscanthus 

 

Replanted 27-May 11-May 30-May 5-Jun 

 

G07 Grass mix 

 

27-May 27-May 11-May 30-May 5-Jun 

 

G08 Poplar 

 

21-Apr 

    

 

G09 Old field 18-May 27-May 27-May 11-May 30-May 5-Jun 

 

G10 Prairie 

 

27-May 27-May 11-May 30-May 5-Jun 

 

 

       

KBS G01 C. Corn 22-Jun 15-Jun 13-Jun 11-Jun 12-Jun 18-Jun 

 

G02 Rotation 

 

10-May 13-Jun 11-Jun 28-Jun 27-Jun 

 

G03 Rotation 15-Jun 15-Jun 

 
11-Jun 

 
27-Jun 

 

G04 Rotation 22-Jun 

 

20-May 

 
28-Jun 

 

 

G05 Switchgrass Replanted 10-May 18-May 4-May 16-May 23-May 

 

G06 Miscanthus 22-Jun 10-May 18-May 4-May 16-May 23-May 

 

G07 Grass mix Replanted 10-May 18-May 4-May 16-May 23-May 

 

G08 Poplar 

 

1-Jun 

    

 

G09 Old field 15-Jun 10-May 18-May 4-May 16-May 23-May 

 

G10 Prairie Replanted 10-May 18-May 4-May 16-May 23-May 

Bolded values indicate corn phases From2009-2011, G02-G04 were in a corn-canola-soybean 

rotation. From 2012-2014, G02 was continuous corn with a cover crop, while G03-G04 were a 

corn-soybean rotation with a cover crop. Soybean phases received no nitrogen fertilizer. 
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Table 5.3 Description and prior distributions for parameters used inN2O emissions model recalibration 

Process Parameter Description 

Prior distribution 

Min Max 

Denitrification DKM Half saturation constant (nitrate) 5 120 

 

DQ10 Q10 factor 1.0 2.5 

 

DWA Exponential coefficient for WFPS relationship 0.1 10.0 

 

PDR Potential denitrification-driven N2O flux 1 10000 

Nitrification NKM Half saturation constant (ammonium) 1 50 

 

NQ10 Q10 factor 1.9 13 

 

NWA Beta distribution parameters for WFPS 

relationship 

5 15 

 

NWB 1 12 

 

PNR Potential nitrification-driven N2O flux 1 1000 

Half saturation constants are in units of ug g soil, potential fluxes are in g ha-1 day-1, all other 

terms are unitless. PDR and PNR are not denitrification potential rates, as they reflect N2O 

production ratios for these processes, upper values are based on Hénault et al. (2005). Half 

saturation constants and NQ10 ranges are based on values from Lehuger et al. (2009), other 

values were given minimally informative priors. 
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Table 5.4 Clusters of orthologous groups (COG) function categories. 

Category Function 

J Translation, ribosomal structure and biogenesis 

A RNA processing and modification 

K Transcription 

L Replication, recombination and repair 

B Chromatin structure and dynamics 

D Cell cycle control, cell division, chromosome partitioning 

Y Nuclear structure 

V Defense mechanisms 

T Signal transduction mechanisms 

M Cell wall/membrane/envelope biogenesis 

N Cell motility 

Z Cytoskeleton 

W Extracellular structures 

U Intracellular trafficking, secretion, and vesicular transport 

O Posttranslational modification, protein turnover, chaperones 

X Mobilome: prophages, transposons 

C Energy production and conversion 

G Carbohydrate transport and metabolism 

E Amino acid transport and metabolism 

F Nucleotide transport and metabolism 

H Coenzyme transport and metabolism 

I Lipid transport and metabolism 

P Inorganic ion transport and metabolism 

Q Secondary metabolites biosynthesis, transport and catabolism 

R General function prediction only 

S Function unknown 

Information copied from 

ftp://ftp.ncbi.nih.gov/pub/COG/COG2014/data/fun2003-2014.tab 
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 Figure 5.1 Comparison of N2O flux and environmental measurement distributions between samples with and without full microbial and 

environmental data. Top panels were transformed by inverse hyperbolic sine (IHS). Boxes indicate 25th, 50th, and 75th percentiles. 
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Figure 5.2 Distribution of aggregate annual N2O emissions among sites and fertilization. Values are plotted on a logarithmic scale. Boxes indicate 

25th, 50th, and 75th percentiles. Note that the number of observations and the range of years represented varied by cropping system and site (see 

Fig. 5.3).  
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Figure 5.3 Aggregate annual N2O emissions by year and treatment. Lines indicate median values, n=5 at ARL, n=4 at KBS. G02-G04 are annual 

crop rotations: corn-soybean-canola from 2009-11, after which G02 was cover-cropped continuous corn and G03-G04 were a corn-soybean 

rotation grown with cover crops (rotation schedule is given in Table S4.1).  
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Figure 5.4 Dates on which yearly peak flux events were observed. One peak flux was recorded per sample. Typically, corn systems were fertilized 

later than all other systems; full fertilization schedule is given in Table 5.2.
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Figure 5.5 Comparison of N2O fluxes and environmental parameters measured on dates with and without 

peak flux events. Within a system, all dates on which at least one sample recorded a peak flux were 

considered peak flux dates. Top three panels are IHS transformed. Boxes indicate 25th, 50th, and 75th 

percentiles. 
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Figure 5.6 Posterior distributions of N2O emissions model parameters (left), and of mean values for the 

resulting multiplicative constraints (right). Units and interpretations of parameters are given in Table 5.3. 
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Figure 5.7 Individual plot-year examples of the accuracy of N2O flux predictions obtained through model 

recalibration (black points) relative to observed values (red points and lines). Samples selected to 

represent the 10th, 50th, and 90th percentile of sample-level root mean squared error for all plot-years from 

a site. 
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Figure 5.8 Posterior estimates of potential production of N2O via denitrification and nitrification, based on N2O emissions model recalibration. 

Distributions are based on 6000 samples, with boxes indicating 25th, 50th, and 75th percentiles. Within a cropping system and process, samples are 

sorted by ascending median values to facilitate visualization.
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Figure 5.9 Correlation of aggregate annual N2O emissions to peak fluxes and model-derived potential 

N2O production from denitrification (PDR) and nitrification (PNR). Black lines indicate linear fits. All 

axes are plotted on a logarithmic scale. 
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Figure 5.10 Deviance in estimators of N2O production capacity explained by microbial functional gene 

profiles by elastic net modeling, as a function of the alpha regularization parameter. Point size was capped 

at 131 terms for display. Successively lighter shades indicate 80th, 85th, 90th, and 95th percentiles for 

deviance ratios for 200 permutations of response variables within cropping system and year. Sites were 

analyzed independently.



 

 

1
7

7
 

 

Figure 5.11 Proportional representation of function categories in COGs retained by elastic net models of aggregate N2O emissions. See Fig. 5.10 

for actual number of terms retained at each level of alpha and Table 5.4 for interpretation of function categories. 
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EPILOGUE 

Next steps and publication plans 

The preceding chapters were organized to try to present an overarching narrative about the effects of 

cropping systems on soil microbial communities and nitrous oxide (N2O) production. Some 

reorganization of these analyses will be necessary to produce standalone narratives for publication.  

The analysis of cropping system and environmental effects on N2O production could combine the 

environmental constraints analyzed in Chapter 4 with the aggregate emission and peak flux analyses from 

Chapter 5. This dataset lends itself to two analyses. First, it allows comparison of N2O emissions from a 

diverse array of potential biomass feedstock cropping systems. While similar data have been generated 

before (Roth et al., 2014; Toma et al., 2011), such studies include far fewer systems, frequently with a 

single example of attributes such as perenniality and polyculture. The greater breadth of systems in this 

dataset, with multiple instances of key attributes, illustrates the limited consistency of these effects across 

different cropping systems. Second, this allows for a more robust description of how environmental 

factors influence effects attributed to cropping systems. These combined analyses would provide data 

from a variety of systems, which would be useful for subsequent meta-analyses and modeling efforts, as 

well as concrete exploration of the interactions between cropping systems and their environmental 

conditions. 

 The microbial community data, by contrast, will benefit from further analysis prior to publication. 

As discussed in Chapter 3, batch effects influenced functional gene profiles, quite likely due to 

differences in annotation pipelines. Reanalyzing the data within a single pipeline is unlikely to drastically 

alter our findings; in an exercise not presented in this dissertation, we conducted a combined assembly 

with many of our samples, which produced results that did not differ qualitatively from those reported 

here. Nonetheless, a uniform annotation process is tractable and could clarify the influence of treatment 

factors on functional gene profiles by reducing any methodological noise we were unable to correct. 

Another benefit of this reanalysis is that it would enable us to employ KEGG orthology (KO) functional 

gene annotations, which is currently impossible for many of our samples. KO annotations are more 
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extensively curated and updated than the COG annotations we employed, and are contextualized within 

biochemical reactions (Kanehisa et al., 2016). Moreover, KEGG annotations support a more robust 

system for copy-number estimation (Manor and Borenstein, 2015), which could further improve the 

accuracy of our abundance profiling. All of this would allow us to place greater emphasis on individual 

annotations, leading to a more reliable interpretation of the functions retained through elastic net 

modeling, as in Chapter 5. Combining the description of cropping system effects on soil microbial 

communities with their connection to variability in N2O emissions would produce an exciting story. 

 The N2O production model recalibration does not appear worth pursuing further. There are 

sufficient deficiencies in the underlying model and in our ability to implement it with our extant dataset to 

make this analysis worth reporting. More generally, the approach we attempted here is of limited utility. 

N2O production potential can be measured directly using denitrifying enzyme activity assays (Smith and 

Tiedje, 1979) or other methods, without the need for numerous field observations or the risk of failing to 

sample a sufficiently broad range of environmental conditions to accurately model the system. We are 

presently conducting such an analysis in a separate project, which looks at the effects of fertilization rates 

on nitrogen cycling in switchgrass. 

Broader findings 

Cropping system differences are less extreme and less consistent than expected 

The underlying premise of the bioenergy cropping systems experiment was that meaningful, 

management-relevant differences existed among agroecosystems. Properties like perenniality, plant 

species diversity, or "natural" status have been hypothesized or demonstrated to influence productivity, 

nutrient cycling, suitability as habitat, and provision other ecosystem services (Daily et al., 1997; Meehan 

et al., 2011; Tilman et al., 1997; Werling et al., 2014). This reasoning led to an emphasis on perennial, 

preferably polycultural, systems as the ideal means of providing bioenergy feedstocks (Griffith et al., 

2011; Robertson et al., 2008; Tilman et al., 2006). These properties influenced nitrogen cycling, including 

N2O emissions, potentially even changing their response to environmental conditions 



180 

 

 

(Dechow and Freibauer, 2011; Niklaus et al., 2006; Oelmann et al., 2007; Palmborg et al., 2005). 

Microbial communities similarly responded to agroecosystem differences (Allison et al., 2005; He et al., 

2008; Liang et al., 2012). Our initial studies of this system also indicated major cropping system 

differences in soil microbial community composition (Herzberger et al., 2014) and N2O dynamics (Oates 

et al., 2016). In the analyses presented here, however, we consistently encountered weaker and less 

consistent cropping system effects than we anticipated. 

 Cropping systems lie at the heart of all five chapters in this dissertation, and in all cases they 

exerted significant effects on the property we studied, although frequently to a smaller extent than we 

expected. We anticipated that many cropping system effects would reflect ecological distinctions like 

perenniality and plant diversity, but this was rarely the case. In Chapter 1, we observed massive 

differences between the membrane lipid profiles of corn and prairie systems, but much smaller 

differences in their 16S rRNA and functional gene abundance profiles. In Chapter 3, functional gene 

abundances often varied as much within a cropping system as they did between different systems and 

relative differences among systems changed from year to year. In Chapter 4, we saw considerable overlap 

in the N2O flux distributions of switchgrass and annual systems, as well as minimal system-level 

differences in N2O flux responses to environmental constraints, despite differences in emissions factors 

among some of these systems (Duran et al., 2016). In Chapter 5, we saw considerable overlap in 

distributions of aggregate emissions for many systems, and similar overlap in the values of peak N2O 

fluxes from those systems.  

 These findings, though unexpected, are plausible. Many of our expectations for the relative 

behavior of these cropping systems stems from pre-existing, established examples. In many cases, the 

decision to establish a particular system reflected soil and other ecosystem properties, which may have 

driven much of the variability we observed (Liang et al., 2013, 2012). The systems in this study were all 

grown in an agronomic trial framework that sought to minimize the influence of system-independent 

conditions (Sanford et al., 2016). Moreover, systems were managed following university extension 

recommendations, which among other things seeks to minimize undue environmental impacts. If 
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management had included mechanical disruption via tillage, manure application, or excessive fertilization 

we might have observed more extreme and consistent differences in N2O emissions and microbial 

community composition.  It is critical to note that limited cropping system effects did not result in limited 

variability in our responses. N2O production and soil nitrogen concentrations varied over orders of 

magnitude within a system (Chapter 4, Chapter 5). While microbial community variability was less 

dramatic (Chapter 1, Chapter 3), there were nonetheless substantial differences in the abundances of 

specific genes and in the overall abundance profile.  

 The limited and inconsistent cropping system effects are frustrating from a management and 

policy perspective, as they indicate it will be difficult to predict outcomes and design straightforward 

policies based primarily on cropping system identity. From a research perspective, particularly an 

ecological one, this is tremendously exciting, as it implies uncharacterized sources of variation that may 

ultimately result in a greater dynamic range over which agroecosystem functioning can be influenced. 

Cropping system effects manifest rapidly but remain small relative to interannual variability 

We anticipated to observe a gradual, progressive emergence of differences among cropping systems. For 

perennial systems in particular, the conceptual model was of an initial establishment phase followed by a 

more stable phase, with nutrient cycling, productivity, and other system functions differing between the 

two (Oates et al., 2016). Soil carbon, changing over decades to centuries, provided a perfect example of 

the long-term dynamics we expected to observe (Sanford et al., 2012). From a microbial perspective, this 

expectation was supported by literature reports of long-term land use legacies outweighing current plant 

species compositions (Jangid et al., 2011) and ongoing directional microbial community shift for years 

following land use conversion (Allison et al., 2005; Jangid et al., 2010).  

 Yield data from BCSE cropping systems largely followed the expected patterns. Yields from 

most perennial systems increased over multiple years before stabilizing (Sanford et al., 2016). In contrast, 

cropping system differences were immediately visible in both the microbial and N2O production data we 

analyzed, but any subsequent increase in that difference was lost amidst interannual variability. Microbial 

community metrics diverged significantly among systems two years after BCSE establishment, but the 
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magnitude of that divergence did not in subsequent years (Chapter 1, Chapter 3). Similarly, 

“establishment phase” N2O dynamics did not differ from those observed in more “mature” systems 

(Chapter 4, Chapter 5), with the sole exception of KBS poplar, where we observed the expected 

progressive decrease in N2O emissions until the system was disrupted. Cropping system effects 

manifested quickly and did not increase over the study period. At the same time, we observed 

considerable temporal variability. Relative differences among cropping systems were often inconsistent 

across years and measurements taken from individual plots correlated weakly over time; for many 

analyses, plot-years could be treated as independent entities. Overall, the systems we studied were 

characterized by high variability that was only partially explained by cropping system and interannual 

effects. 

Microbial community properties reflect plot-level environmental variability 

At the outset of this project, we expected our story would reflect gradually increasing cropping system 

influence on soil microbial communities and N2O production dynamics. While we did observe cropping 

system influence, most of the variance we observed resided among plots with ostensibly similar 

environmental conditions and selective pressures.  

This might plausibly have rsulted  

It is easy to imagine complete independence between the broad distributions of N2O emissions and the 

minimally-structured ordinations of microbial community properties, each generated by their own 

unmeasured stochastic processes or resulting from particular methodological issues. Instead, we found 

that these seemingly disorganized functional gene profiles contained indicators that accounted for much 

of the seemingly random plot-level variability in N2O emissions. In Chapter 2, our analysis was clouded 

by the risk of spurious correlation driven by small sample sizes. In Chapter 5, we found a similar strength 

of relationships with a much larger, more heterogeneous dataset. These models were not built purely from 

microbial indicators, as many retained year- or system-specific terms, but microbial data were central to 

their capacity to explain variability within treatment groups. The functional genes identified through this 

approach did not immediately suggest a mechanism by which this relationship operated, and our analyses 
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could not have determined whether microbial communities drove the patterns of N2O emissions we 

observed or merely served as sensitive, informative indicators of the actual drivers. However, the 

relationship we observed between the highly variable, seemingly noisy patterns of N2O emission and 

microbial community composition suggests a strong link, whether direct or indirect, between the two. 

This link promises to be more complex and informative than we initially anticipated; it and its 

implications about the shaping of microbial communities and regulation of environmental processes 

would be very exciting. 
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