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ABSTRACT

Agroecosystems may differ in multiple ecosystem properties, among them nitrous oxide (N2O)
production and soil microbial community composition. We hypothesized that perenniality, plant species
richness, and exogenous nitrogen inputs all influence N.O production directly through regulation of
substrate concentrations and other environmental conditions and indirectly through changes to soil
microbial functional characteristics. We studied the interplay among cropping systems, microbial
communities, and N.O production in the context of an agronomic trial of potential bioenergy feedstock
cropping systems.

We measured N,O production from 2009-2014 and collected accompanying data on soil
temperature, water-filled pore space, and inorganic nitrogen concentrations. Individual N,O fluxes and
aggregate annual N>O emissions were lower in perennial systems relative to annual ones, but were not
consistently influenced by plant species richness in perennial systems. Environmental variables defined
upper limits for N2O fluxes, but did little to explain cropping system effects or their lack.

We explored microbial community differences between continuous corn and prairie systems
using membrane lipid profiling, amplicon sequencing, and functional gene annotations from shotgun
metagenomic sequencing. The strength of cropping system effects differed among methods, with the
strongest effects observed in lipid profiles. We used elastic net modeling to correlate community profiles
to aggregate N.O emissions. Only the corn system could be effectively modeled, with the best models
created from 16S rRNA amplicons and functional gene abundances.

We used bacterial functional gene abundance profiles to characterize microbial communities
across a broader range of cropping systems. The strength of cropping system effects varied among site
years. Ecological factors such as perenniality and species diversity did not determine abundance patterns
for either the full set of genes explored or for groups of genes with similar functions. Similarly, individual

denitrification pathway genes did not systematically differ among cropping systems.
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Cropping system effects on N.O production and functional gene abundances were weaker than
anticipated. Despite this, elastic net modeling linked gene abundance patterns to variation in N,O
emissions with considerable accuracy. This indicates that within-cropping system variability in N-O

production and functional genes are in some way connected.
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PROLOGUE
Project background and rationale
This dissertation presents an attempt to link the inherent nitrous oxide (N2O) production capacities of
bioenergy feedstock cropping systems to the functional genetic composition of their soil microbial
communities. This project formed part of the US Department of Energy-funded Great Lakes Bioenergy
Research Center (GLBRC) portfolio of sustainability research. GLBRC is one of three Bioenergy
Research Centers funded through the surge of public investment in energy research that resulted from the
oil crisis in the mid-2000s (Slater et al., 2010). The GLBRC research portfolio emphasized the ecological
impacts of bioenergy feedstock production from the outset, considering both risks to be avoided and
potential for beneficial ecological changes (Robertson et al., 2008). The Jackson Grassland Ecology Lab’s
expertise with studying biogeochemical cycling in agroecosystems (Bleier and Jackson, 2007; Craine and
Jackson, 2010; Jackson et al., 2006) situated it naturally to take a leading role in the study of greenhouse
gas emissions and nitrogen dynamics in potential bioenergy feedstock cropping systems (Duran et al.,
2016; Oates et al., 2016). As GLBRC research projects were being set up, | found myself in possession of
a genetics-based hammer (Duncan et al., 2015) and a growing interest in microbe-shaped nails.

To paraphrase one frequently excited soil ecologist, microbiology has always been exiting, but
the period in which | conducted this research was special. The ongoing development and increasing
accessibility of culture-free microbial community characterization methods revealed extensive
underestimates of microbial diversity, while also providing new and exciting tools to explore that
diversity (Hirsch et al., 2010; Singh et al., 2009). Genetic methods led to major changes in the
understanding of microbial taxa that involved in major biogeochemical transformations such as ammonia
oxidation (Leininger et al., 2006) and nitrous oxide reduction (Sanford et al., 2012). At the same time, a
growing body of evidence illustrated the critical importance of soil microbial activity and communities on
ecosystem functioning, notably in biogeochemical cycling (van der Heijden et al., 2008). Despite this, the
connection of microbial community composition and structure to ecosystem functionality remained

difficult to demonstrate (Choudoir et al., 2012; Nannipieri et al., 2003) and as such provided a tempting
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target for an ambitious ecologist. In particular, the microbial ecology of bioenergy feedstock cropping
systems intersected with my research interests as well as those of the GLBRC and the Jackson Lab.

Soil microbial ecology formed an integral part of the GLBRC sustainability research portfolio
from the outset. Early work characterized microbial communities in extant agricultural and established
grassland systems (Jesus et al., 2016; Liang et al., 2012, 2016), and in short-rotation woody crop systems
(Xue et al., 2016). In the realm of ecological theory, the relationship between microbial diversity and
function were investigated (Levine et al., 2011; Werling et al., 2014). The Bioenergy Cropping Systems
Experiments (BCSES) at the University of Wisconsin-Madison Arlington Agricultural Research Station
(ARL) and the Michigan State University W.K. Kellogg Biological Station (KBS) provided a platform
where a broad array of cropping systems could be compared in an agronomic experimental framework
(Sanford et al., 2016). Work on these systems emphasized community fingerprinting or
Characterization of these systems’ microbial communities largely entailed taxonomic profiling or
emphasis on particular functional genes (Herzberger et al., 2014; Jesus et al., 2016; Liang et al., 2016).
Needing a niche, | focused my work on functional gene profiling.

While most ecology focuses on organisms or communities as the basic unit of inquiry, complex
microbial communities lend themselves to a gene-centric approach (Tringe et al., 2005; Wilmes et al.,
2008). The concept of the gene as a meaningful unit for ecological selection reflects the potential
disconnect between microbial taxonomy and function enabled by horizontal/lateral gene transfer (Chia
and Goldenfeld, 2011; Lawrence, 2002). In many cases, communities of organisms performing a function
can be defined and detected through indicator genes involved in that function, e.g. nitrate reductase
(nirK/S) for denitrifiers (e.g. Yoshida et al., 2010) or nigrogenase (nifH) for diazotrophs (e.g. Wakelin et
al., 2009). At its most direct, this approach examines the relative abundance of a functional gene within a
population as a means of evaluating the ecological importance of that function (Petersen et al., 2012).
Simultaneous abundance profiling of large numbers of genes was initially done through microarrays (He
et al., 2010), a technology whose familiarity no doubt contributed to my enthusiasm for gene-centric

science (Ma et al., 2007). While the confluence of increased availability of high-throughput sequencing
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and profit-driven international business decisions ultimately resulted in my use of shotgun metagenomic
sequencing rather than microarrays, functional gene abundance profiles remained the primary mechanism
by which I characterized soil microbial communities in this project.

With the means of investigating microbial communities thus settled, | needed to specify which of
their effects to study. My initial interests involved soil and/or agroecosystem “health” (Kibblewhite et al.,
2008). My readings at the time suggested that microbial communities could be highly sensitive integrators
of complex functions and behaviors (Ritz et al., 2009; Winding et al., 2005). As the nigh-impossibility of
operationally defining such concepts set in, | focused on the production of trace gasses with global
warming potential, notably CO., N>O, and CH.. Inability to isolate heterotrophic respiration ruled out
CO: as an informative response, while our estimates of CH, fluxes were too noisy to instill much
confidence, leaving what was fortunately the most interesting of the three. In many senses, N.O
production in soil provides an ideal framework for studying the effects of microbial community
composition on an ecologically relevant process. The details of this are presented extensively, and
somewhat repetitively, throughout this dissertation, but briefly stated, N.O is produced by relatively
simple biochemical pathways whose key genetic components are well-characterized and found broadly, if
variably, throughout microbial populations (Philippot and Hallin, 2005). The gas itself is one of the chief
mechanisms by which agricultural sectors in developed countries contribute to global warming (Hu et al.,
2015). Thus, this system provided a compelling ecological question, a sizeable body of knowledge to
study it, and clear practical motivations for studying it.

Structural overview

My dissertation project was conducted on the BCSEs at ARL and KBS. This framework enabled me to
largely isolate cropping system effects from the effects of climate and physical soil properties and
provided a statistically robust experimental design. Nitrous oxide and other environmental data were
collected from these experiments as one of the core data-generating activities of the GLBRC, creating a
far more extensive dataset than | could have generated myself. The dissertation consists of five data and

analysis chapters:
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Chapter 1 compares the soil microbial communities of continuous corn and restored prairie at
ARL using four characterization methods: membrane lipid profiling, 16S rRNA and nitrous oxide
reductase (nosZ) amplicon sequencing, and shotgun sequencing. This study served multiple purposes. It
allowed comparison of the shallow shotgun metagenomic sequencing approach employed in this
dissertation to more established methods for community characterization. It gave me an opportunity to go
through the process of generating and analyzing sequencing data using a dataset of tractable size. Finally,
by comparing the two most ecologically dissimilar cropping systems in the BCSE, it was a test of the
feasibility of my underlying approach. The method comparison and repeated annual measurements were
relatively novel in the literature, resulting in this chapter’s publication.

Chapter 2 correlates the microbial community data from Chapter 1 to N.O emissions data
generated in a prior publication (Oates et al., 2016). This is the chapter that almost wasn’t, as it was
initially intended as a proof of concept exercise rather than a planned publication. However, posters and
presentations of this exercise generated sufficient interest to motivate packaging it into what I hope to
make a standalone publication. This chapter forced an early confrontation with the challenge of bringing
potentially thousands of predictors from sequencing data to bear on the prediction of, at most, a few
dozen flux observations.

Chapter 3 explores the microbial ecology of BCSE cropping systems, focusing on the extent to
which systems shape characteristic functional gene profiles in their associated microbial communities. It
was necessary to determine the extent to which microbial communities differed among and within
cropping systems in order to evaluate whether they contained sufficient information to capture variance in
an ecosystem property like N,O production potential.

Chapter 4 focuses on how environmental conditions constrain individual N,O flux events. The
initial intent with this chapter was to focus on generating estimators of inherent N»,O production, but
several factors changed that. The most exciting estimation method required considerable structural
overhead to describe, and ultimately did not work well at all. At the same time, initially minor analysis of

ecological constraints proved unexpectedly compelling. In the end, it was cleaner to present fluxes and
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their environmental constraints separately from estimators of N-O production and their prediction by
microbial data.

Chapter 5 is an odd duck. It generates four estimators of inherent N,O production capacity,
which it then models from functional gene profiles using the elastic net approach explored in Chapter 2.
This chapter makes sense within the context of the dissertation, but would make for an unwieldy
publication. This chapter contains elements that contribute to the stories in Chapters 3 and 4, as well as
some analyses that failed to provide results worth publishing. Its tone and structure differ from those of
the preceding chapter, with the aim of communicating the rather dense set of analyses and methods as
clearly as possible.

A brief general conclusion outlines a proposed framework for publishing the contents of this
dissertation. This primarily entails moving analyses from Chapter 5 to Chapters 3 and 4 to broaden the
story. In this section, | also present some themes that occurred across the chapters, but were not
necessarily their focus.
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Abstract

Perennial grass-based agroecosystems are under consideration as sustainable sources of bioenergy
feedstocks. Establishing these systems on land previously used for conventional agricultural production is
expected to dramatically alter the composition and functional capacity of their associated soil bacterial
communities, but the rate at which these changes will occur is unclear. Methods for characterizing
bacterial communities are both varied and useful for documenting different aspects of the soil microbiota
and their dynamics during this transition. Here, we studied the soil-associated bacterial communities of
continuous corn and restored prairies systems within a cropping systems experiment 2 to 4 years after
establishment using 1) phospholipid fatty acid (PLFA) profiling, 2) shotgun metagenomic sequencing, 3)
amplicon sequencing of the 16S rRNA gene and 4) sequencing of nitrous oxide reductase (nosz). All
characterization methods discriminated the bacterial communities between the two cropping systems, but
the largest differences were observed with PLFA profiling. Differences between the two cropping systems
did not significantly increase during the study period. The community compositions described by
sequence-based methods were mutually correlated, but were only weakly correlated to the composition
described by PLFA profiling. Shotgun metagenomics detected a much higher abundance of
Actinobacteria than amplicon sequencing and revealed more consistent changes between cropping
systems over time. Cropping system and interannual effects on the ratios of biomarkers associated with
Gram-negative and Gram-positive bacteria were entirely different for PLFAs, rRNA amplicons, and
shotgun-sequenced 16S rRNA. Because these characterization methods reflect different aspects of the
bacterial community, none are clearly superior or optimal, but instead all provide insight into how

communities respond to cropping system effects.



1.1 Introduction

The interaction between soil microbial communities and their environment is a major driver of terrestrial
agroecosystem dynamics. Microbial communities directly influence agroecosystem productivity and plant
community composition (Callaway et al., 2004; Kardol et al., 2007), soil carbon dynamics (Bardgett et
al., 2008), and major nutrient cycles (Hawkes et al., 2005; Nannipieri et al., 2003). Agroecosystems in
turn influence the composition and function of soil microbial communities (Oehl et al., 2010; Sayer et al.,
2013). The move to develop cropping systems that can produce biomass feedstocks for bioenergy and
bioproducts in a sustainable manner has motivated increased interest in the ecological effects of
introducing diverse perennial systems onto land previously used for agriculture (Robertson et al., 2008),
including the effect on microbial communities (Li et al., 2015; Mao et al., 2013). There is substantial
evidence that the composition and functional capabilities of a soil microbial community change when
transitioning between conventional agricultural and less intensively managed perennial systems (Allison
et al., 2005; Liang et al., 2012; Xue et al., 2013). However, the timing of microbial community change
following such a transition remains unclear.

Soil microbial communities shift on a decadal timescale following establishment of perennial
systems on soils with a previous history of annual cropping (Allison et al., 2005). Long-term shifts are not
monotonic, with systems passing through transitional states as they continue to mature (Jangid et al.,
2010); short-term dynamics are less well characterized. Soil microbial communities exhibit less temporal
variation than those in other environments (Shade et al., 2013) possibly because of the prevalence of
dormancy in soil microbiota (Lennon and Jones, 2011), and microbial community compositions may
reflect land uses from decades in the past (Jangid et al., 2011). This apparent resistance to change
suggests transitions following land use change should occur in consistent, progressive steps toward major
transitional or terminal states. At the same time, there is evidence that soil microbial communities are
susceptible to external perturbation (Allison and Martiny, 2008) and that community succession can occur
over a single growing season (Schmidt et al., 2007). From this perspective, microbial community

transitions could be uneven in the short-term, exhibiting expected patterns only over longer periods of



time. Given the linkage between microbial community composition and function (Frey et al., 2004; Reed
and Martiny, 2007; Wakelin et al., 2008), the consistency with which soil microbial communities change
following land use conversion could influence the variability of microbially-mediated functions during
the establishment phase of perennial cropping systems.

Modern efforts to track changes in soil microbial communities typically employ culture-free
characterization, particularly sequencing-based methods that interrogate the metagenome (Hirsch et al.,
2010). These metagenomes are dominated by bacterial sequences (Fierer et al., 2012), effectively causing
most recent work in soil microbiology to primarily reflect bacterial communities and dynamics. Many
characterization methods focus on distinct aspects of a community, such as the taxonomic makeup of
individuals or the relative abundance of functional genes, which could potentially differ in their
responsiveness to land use change.

We previously used phospholipid fatty acid (PLFA) profiling to examine the soil microbial
community of continuous corn and sown tallgrass prairie cropping systems during the two to four years
following their establishment on historically agricultural soil (Herzberger et al., 2014). In the present
study, we reexamine these soils, focusing on their bacterial component. To better resolve the phylogenetic
and functional changes undergone by this community, we supplemented the bacterial PLFA data with
amplicon sequencing of 16S rRNA and nosZ, a gene that identifies denitrifiers, as well as functional
genes and 16S rRNA sequences derived from shotgun metagenomics sequencing (SMG). Our goals were
to compare how these four distinct methods characterized the divergence between the soil bacterial
communities of recently-established corn (Zea mays L.) and sown tallgrass prairie, and evaluate whether
yearly increases in this divergence were visible despite interannual variability in community composition.
1.2 Methods
1.2.1 Site description and soil sampling
This experiment was conducted on the Bioenergy Cropping Systems Experiment (BCSE) at Arlington
Agricultural Research Station (Arlington, Wisconsin, USA, 43°18'10 N, 89°20'40 W). The BCSE

consisted of eight cropping systems, including continuous corn and sown tallgrass prairie, in a



randomized complete block design with five replicates (full details are given in Sanford et al., 2016).
Prior to 2005, the site was used for agronomic trials and production, with corn, soybean, and alfalfa as the
primary crops. From 2005 to 2007, the site was under a hayfield mix of alfalfa (Medicago sativa L.) and
orchardgrass (Dactylis glomerata L.) (blocks 1 to 3) or corn (blocks 4 and 5). All treatments were
established in spring 2008. The experiment is situated on a highly productive Plano silt loam (Fine-silty,
Mixed, Superactive, Mesic Typic Arguidolls). These are deep (>1 m), well-drained soils with little relief,
formed under tallgrass prairie vegetation in loess deposits over calcareous glacial till. Mean annual
minimum and maximum air temperatures are -14.6 and 27.6 °C, respectively, with 869 mm mean annual
precipitation.

Soils were sampled in late August in 2010, 2011, and 2012. For each plot, 5 cores (3.7 cm
diameter, 15 cm depth) were collected at variable, arbitrary distances (<5 m) from a transect running
lengthwise through the plot. Cores were immediately placed on wet ice, sieved to 2 mm within 24 h of
sampling, and frozen at -20 °C within 48 h of sampling. Frozen soils were lyophilized for storage prior to
lipid and DNA extraction. All molecular characterization methods were performed on each individual
sample.

1.2.2 PLFA extraction and quantification

We employed a combined phospholipid fatty acid (PLFA) and fatty acid methyl ester (FAME) extraction
method, as described in Herzberger et al. (2014). Soils were extracted with 1:2 CHCI3:CH3;OH with the
extracted lipids saponified with NaOH and methylated with HCI. Lipids were analyzed with a Hewlett-
Packard Agilent 6890A gas chromatograph (Agilent Tech. Co., Santa Clara, CA) equipped with a 25-
mx0.2-mmx0.33-um Agilent Ultra-2 (5% phenyl)-methylpolysiloxane capillary column (Hewlett
Packard, Palo Alto, CA) and flame ionization detector. Fatty acids were identified using MIDI’s
EUKARY method database. We restricted our analysis to PLFAs frequently associated with bacteria, as
described in Table S1.1 (Balser and Firestone, 2005; Frostegard et al., 1993; Hill et al., 2000; Wilkinson,

1988; Zelles et al., 1992).



1.2.3 DNA extraction

DNA was extracted from the soil using an adaptation of a method developed by Stevenson and Weimer
(2007). Lyophilized soil was ground with liquid nitrogen in a ceramic mortar to disrupt aggregates. We
prepared two tubes per sample, with each tube receiving 0.5 g ground soil (1 g total), 0.5 g 0.1-mm silica-
zirconia beads (BioSpec Products, Bartlesville, OK), 1 ml extraction buffer (EB; 100 mM Tris-HCI, 10
mM EDTA, 0.15 M NaCl, pH 8.0), 50 ul 20% SDS, and 500 pl cold phenol (buffer equilibrated to pH
7.9). Tubes were bead beaten for 10 min on a converted paint shaker, incubated 10 min at 60 °C, then
beaten an additional 10 min. Samples were separated by centrifugation (16,000 x g, 10 min) and the
aqueous layer was washed successively with 500 pl phenol, 500 pl 1:1 phenol:chloroform, and 500 pl
chloroform, with centrifugation (16,000 x g, 10 min) at each step and the aqueous layer brought to 1 ml
volume with EB. To precipitate, 900 ul of aqueous layer was combined with 100 ul 3 M Na acetate and
600 pl isopropanol, incubated for 30 min at 4 °C and centrifuged (16,000 x g, 20 min). The DNA pellet
was washed once with 70% ethanol, then both tubes from a sample were recombined in 150 pl 1/10 TE
(10 mM Tris pH8, 0.1 mM EDTA). These samples were subsequently cleaned with a Power Soil Cleanup
Kit (Mo Bio Laboratories, Carlsbad, CA) following manufacturer instructions.

1.2.4 DNA sequencing and classification

We characterized the composition of the overall and denitrifying bacterial communities using 16S rRNA
and nosZ amplicons. We amplified the VV6-V8 variable region of the bacterial 16S rRNA gene using
primers described by de Oliveira et al. (2013) and a region of the catalytic subunit of nosZ using nosZF
(Kloos et al., 2001) and nosZ1622R (Throbéck et al., 2004) primers. Primer sequences are given in Table
S1.2. Segments were amplified using 5-ng template DNA and 0.5 uM of each primer in 25 pl volume
using Platinum Blue PCR SuperMix (Life Technologies, Carlshad, CA). Polymerase chain reaction
(PCR) was performed following de Oliveria et al (2013): denaturation for 2 min at 94 °C; 30 cycles of 30
sat 94 °C, 45 s at 50 °C, and 1.75 min at 68 °C; and a final extension for 10 min at 68 °C. We limited our
amplification to 30 cycles to allow for detection of low-copy template and to ensure the overwhelming

majority of amplicons would be created in the 15-25 cycle range (Lee et al., 1996). PCR products were



size-selected by electrophoresis on a 1% AquaPar LM low-melt agarose (National Diagnostics, Atlanta,
GA) TAE gel and recovered with a Zymoclean Gel DNA Recovery Kit (Zymo Research, Irvine, CA).
Sequencing was carried out on a Roche 454 GS Junior Titanium sequencer following manufacturer
protocols and using Lib-L emulsion PCR kits (Roche Life Sciences, Indianapolis, IN) with ~0.8 DNA
molecules per bead.

The program mothur v. 1.33.3 (Schloss et al., 2009) was used to process 16S rRNA amplicon
sequences. Reads were denoised using shhh.flows. Quality filtration removed sequences under 200
nucleotides or with >6 nucleotide homopolymers, >2 primer mismatches, or any barcode mismatches.
Alignment was done against the SILVA reference database (Pruesse et al., 2007), removing sequences of
eukaryotic origin. Chimeric sequences were removed using chimera.uchime. Operational Taxonomic
Units (OTUs) were defined at 95% sequence identity and a representative sequence for each OTU was
taxonomically classified with the Ribosomal Database Project Classifier (Wang et al., 2007) using an
assignment cutoff of 0.8.

Processing of nosZ amplicons was similarly carried out in mothur through the quality filtration
step. Further processing was conducted through the Functional Gene Pipeline (Fish et al., 2013). Unique
sequences were translated with Framebot (Wang et al., 2013) with a minimum length of 66 amino acids
and an identity cutoff of 0.3. These translations were aligned with Aligner (Cole et al., 2014), then
clustered using mcClust (Fish et al., 2013). NosZ OTUs were classified at 90% amino acid sequence
similarity, following Mao et al. (2013).

Shotgun sequencing was carried out at the Department of Energy Joint Genome Institute using
the Illumina HiSeq platform (Illumina, San Diego, CA), multiplexing 12 samples per lane. Trimmed and
screened reads were assembled using SOAPdenovo (v1.05). Gene calling was done with FragGenScan
(v1.16), prokaryotic GeneMark.hmm (v2.8), Metagenome Annotator (v1.0), and Prodigal (v2.50). Reads
identified as belonging to the 16S rRNA genes were taxonomically classified in the same fashion as the
16S rRNA amplicons. Reads were annotated using the updated clusters of orthologous groups (COGSs)

database (Galperin et al., 2015; Tatusov et al., 2000).



1.2.5 Statistical analysis

Data were analyzed in the R statistical package and environment (v3.1.1, R Core Team, 2014).
Multivariate analyses used the ‘vegan’ package (Oksanen et al., 2013). Prior to multivariate analysis,
individual PLFAs, functional genes, or OTUs were removed from the data if not present in at least three
out of five blocks and two out of three years. We did not relativize PLFA values by sample, as PLFA
extractions are quantitative (Liang et al., 2012). COG abundances were relativized following He et al.
(2015). COG read counts were first relativized by the length of their consensus sequence to neutralize the
overrepresentation of longer sequences. We then used the mean abundances of 37 COGs present in a
single copy in nearly all prokaryotic genomes (Table S1.3) to relativize across samples. Amplicon read
counts were relativized to the total number of reads in the sample. Bray-Curtis distances were calculated
for all relativized measures. This metric was not appropriate for PLFA, which used absolute distances;
Euclidian distances were used here instead.

Standard statistical comparisons used linear mixed effects models from the ‘lme4’ package (Bates
et al., 2015) using block as a random term. Means testing was done with the ‘Ismeans’ package (Lenth,
2013).

1.2.6 Accession numbers

PLFA data are available on the Dryad database (http://datadryad.org) under doi: 10.5061/dryad.rk384.
Amplicon sequences were deposited in the NCBI Sequence Read Archive (www.nchi.nlm.nih.gov/sra) as
BioProject 279094. Shotgun metagenomes are in the Joint Genome Institute Genomes Online Database
(https://gold.jgi.doe.gov) under Study ID Gs0095510. Accession numbers for individual samples are
given in Table S1.4.

1.3 Results

1.3.1 Sequencing overview

Shotgun metagenomic (SMG) sequencing generated 1.3 to 2.0 Gbp per sample (48.3 Gbp total), with 2.4

to 4.0 x 10° functional gene reads of which 2,151 to 8,135 reads per sample mapped to the 16S rRNA.



Diversity and coverage statistics for individual samples are given in Table S1.4. With amplicon
sequencing, we generated 2,382 to 6,206 reads per sample for 16S rRNA and 1,116 to 6,681 reads per
sample for nosZ. We found 3,717 operational taxonomic units (OTUSs) using 16S rRNA amplicon
sequencing (490 to 750 OTUs per sample), and 1,072 nosZ OTUs (150 to 290 per sample). Good's
coverage for 16S rRNA amplicons (89 to 95%, 98.5% globally) was lower than for nosZ amplicons (93 to
99%, 99.6% globally). Shannon’s diversity indices for 16S rRNA OTUs were lower for 2010 corn than
for all other crop-year combinations, which were not different from each other, while Shannon’s diversity
indices for nosZ OTUs were the same for all crop-year combinations (Table S1.5). Read number was
correlated to unique OTUs for 16S rRNA amplicons (r = 0.79, P < 0.0001), but not for nosZ amplicons (r
=0.14, P = 0.22). Within samples, unique OTUs for both amplicon types were correlated (r = 0.77, P <
0.0001), but total read numbers were not (r =0.21, P = 0.13).

1.3.2 Factors determining microbial community composition

We used adonis, a permutational analogue to multivariate analysis of variance, to quantify treatment
effects on overall community composition (Table 1.1). All characterization methods found statistically
significant cropping system and interannual effects, although interannual effects were only weakly
significant in the PLFA and nosZ data. The amount of variation these factors explained differed among
methods. Much of the variation in the PLFA data existed between cropping systems, while interannual
effects were less important. Conversely, more of the variance in the SMG COG and rRNA amplicon data
existed among years than between systems. These were the only methods to have significant interactions
between years and cropping systems, likely driven by the 2010 continuous corn samples (Fig. 1.1). Soil
carbon and nitrogen concentrations did not change between 2009 and 2013 and were not different
between the two cropping systems (Table S1.5). Soil bulk density did not differ between cropping
systems in 2009, but was lower overall in 2013, more so in the sown tallgrass prairie than in the

continuous corn system (Table S1.5).
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1.3.3 Ordination of community compositions

Two-dimensional NMDS ordination adequately represented the community compositions found by all
four characterization methods (Fig. 1.1), although two-dimensional stress was greater for the two
amplicon sequencing datasets (Table 1.2). PLFA profiles of the continuous corn and restored prairie
bacterial communities were clearly distinct, with greater variability within the prairie communities (Fig.
1.1A). By contrast, in both rRNA amplicon and SMG COG profiles there was more variability in the corn
system than the prairie system, largely stemming from the differentiation of 2010 corn-associated soil
from all other systems (Fig. 1.1 B, C). Despite overall separation of the bacterial communities from both
cropping systems, there was no indication that this separation changed over the study period. In the nosZ
amplicon data, both corn and prairie communities shifted in the same direction in 2011 before reversing
that transition in 2012 (Fig. 1.1 D).

The three DNA-based characterization methods were correlated both in the Bray-Curtis distances
between pairs of samples and in the distances among samples following NMDS ordination (Table 1.2).
The SMG COG and 16S rRNA amplicon data were particularly well correlated. Inter-sample distance
correlations between PLFA and the DNA-based data were significant, but generally weaker (for exact
values, see Table 1.2).

1.3.4 Taxonomic profiles from amplicon and short read sequencing

We obtained 16S rRNA sequences from amplicons and SMG data, with roughly equal numbers of reads
generated from both methods (Table S1.4). At the phylum level, both datasets were dominated by
Actinobacteria, Acidobacteria, and Proteobacteria (Fig. 1.2, Table S1.6). In both datasets,
Verrucomicrobia abundance increased over time and was higher in sown tallgrass prairie than corn
cultivation. Similarly, both datasets observed high y-Proteobacteria abundance in the corn system in 2010.

Beyond these similarities, the taxonomic profiles generated by amplicon and SMG sequencing
contained substantial differences. The proportions of reads assigned to a given phylum differed
significantly between the two sequencing approaches for all common phyla (Table S1.6, common phyla

defined as accounting for >5% of all reads from at least one of the systems). Actinobacteria were twice as
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abundant in the SMG sequences as in the amplicon sequences. The SMG sequence data also contained
cropping system and temporal trends that were not present in the amplicon sequence data. In the SMG
data, Firmicutes and Bacteroidetes were significantly more abundant in sown tallgrass prairie than
continuous corn cultivation. SMG reads from major Gram-positive phyla (Actinobacteria and Firmicutes)
became rarer over time, while reads from rare or unidentified taxa became more abundant.

1.3.5 Functional group biomass and gene abundance

We compared ratios of PLFAs that are frequently associated with either Gram-positive or Gram-negative
bacteria (Table S1.1) to ratios of SMG and amplicon 16S rRNA reads grouped by phylum-level cell wall
type (Gram-positive or Gram-negative, Table S1.6). Interannual and cropping system effects on these
ratios differed among the three community characterization methods (Fig. 1.3). PLFA biomass associated
with Gram-negative taxa increased in the prairie system, but did not change over time. In contrast, SMG
16S rRNA reads belonging to Gram-negative phyla were not different between cropping systems but
became more prevalent over time in the prairie system. There were no interannual or cropping system
effects in the 16S rRNA amplicons.

1.4. Discussion

1.4.1 Characterization methods differed in their detection of cropping system divergence

In this study, we used four methods to characterize change over time in the bacterial communities of
continuous corn and sown tallgrass restored prairie cropping systems. All methods revealed significant
differences between systems, but varied in the extent of the differences they showed. The greatest
cropping system effects were observed using bacterial PLFA profiles, which produced similar results to
those previously observed using PLFAs from the entire microbial community (Herzberger et al., 2014).
PLFAs associated with Gram-negative bacteria were more abundant in the prairie, matching the
difference observed between corn and prairie sites throughout south-central Wisconsin (Liang et al.,
2012). Differences between cropping systems were considerably smaller, but still significant, for the

DNA-based methods.
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Biomass-based microbial community measures, such as PLFA, may be more responsive to
environmental change than those based on DNA. Prior studies have observed responses to seasonal
variability (Jangid et al., 2010, 2011) and vegetation composition (Ritz et al., 2004) in lipid profiles, but
not in 16S rRNA data. The apparently limited responsiveness of DNA-based characterization methods
may in part stem from the prevalence of dormant organisms (Lennon and Jones, 2011) as well as the
potential persistence of DNA from nonviable organisms (Cordova-Kreylos et al., 2006), both of which
could delay detection of changes in the microbial community. Our results highlight the continued value of
lipid profiling as a valuable tool for assessing microbial community change and a useful complement to
metagenomic methods.

We expected that the sown tallgrass restored prairie system would gradually and progressively
shift its associated bacterial community toward compositions typically found under restored prairies in
this region (Allison et al., 2005; Liang et al., 2012). Progressive divergence from the corn system
bordered on statistical significance in the PLFA data, similar to increasing trends in AMF, Gram-
negative, and total microbial biomass we had previously reported (Herzberger et al., 2014), and suggested
that continued measurement of the systems would have captured increasing divergence. For DNA-based
methods, however, we saw no indication of increasing differentiation during the study period. Increases in
PLFA biomass are detectable in the top 5 cm of soil shortly after prairie restoration, but are only visible at
greater depths once the restoration has been in place for considerably longer (Allison et al., 2007). This
likely reflects the increased availability of oxygen and resources near the soil surface, due in part to the
greater concentration of plant roots. Sampling from the top 15 cm of soil may have diluted the more
rapidly shifting near-surface microbial community. This dilution may not have been as impactful for
PLFA profiles, which should reflect the concentration of microbial biomass in the top 5 cm of soil (Fierer
et al., 2003), as it would be for DNA-based methods, potentially explaining the apparent difference in
their responsiveness. At the same time, we observed considerable interannual variability in bacterial
communities, suggesting our observations were not driven solely by a slower response to land use change

by bacteria deeper in the soil profile. The dramatic shift in the composition of corn associated bacteria
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between 2010 and 2011, observed in both the 16S rRNA and SMG data, best exemplifies this. Soil
microbial communities may exhibit considerable seasonal variability (Schmidt et al., 2007). Some of the
interannual variability we observed may have been due to slight differences in the seasonal timing of our
sampling. Nonetheless, all methods detected differences between the two cropping systems only two
years after their establishment. The change in disturbance regimes may have spurred the initial rapid
differentiation (Allison et al., 2005; Jangid et al., 2010), with broader cropping-system differences driving
more gradual shifts in the community.

A variable not directly addressed in our work is the impact of storage on sample quality. There
are varying views on the appropriate time a soil may be stored unfrozen prior to microbial analyses
(Bloem et al., 2005). Although it is generally accepted that freezing and extraction should happen as soon
after sampling as possible, some guidelines suggest soils may be stored under refrigeration for several
weeks prior to PLFA extraction (Palojérvi, 2005) and in well-drained soils no changes in PLFA biomass
were observed over 30 days of refrigeration (Wang et al., 2014), although other studies report changes
within shorter time periods (Wu et al., 2009). Soils from our two cropping system might have responded
differently to storage. Agricultural soils may be less perturbed by storage than grassland or forest soils
(Cui et al., 2014), possibly because microbial communities in the latter systems typically receive more
labile carbon (Gonzalez-Quifiones et al., 2009). Although no differences in total soil carbon developed
during our study period (section 3.2), it is possible that a difference in the pool of available carbon could
have gone unnaoticed. If so, the sown tallgrass prairie, with its more active rhizosphere, could have lost
more biomass during storage than the corn-associated soils, causing us to underestimate divergence
between the two systems.

1.4.2 DNA-based methods identified similar community compositions

Soil bacterial community composition was well correlated among DNA-based methods. Fierer et al.
(2012) reported high correlation between taxonomic composition and functional gene abundance over an
ecological gradient that included arctic tundra, desert, and tropical forests. Our findings suggest this

relationship may hold within a gradient of ecologically similar systems. Although many functional genes
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in bacteria are not restricted to a narrow set of taxa (Ragan and Beiko, 2009), there are likely linkages
between taxonomic and functional composition at the community level (Langille et al., 2013).

We observed limited nosZ diversity, dominated by a small number of taxa, similar to previously
published results (Ruiz-Rueda et al., 2009). It is also worth noting that the nosZ primers we used do not
capture ‘atypical’ nosZ genes (Orellana et al., 2014; Sanford et al., 2012), indicating our analyses exclude
a sizeable component of the denitrifying community. It is, however, interesting that the number of unique
nosZ types we observed in a sample correlated strongly with the number of unique 16S rRNA OTUs. This
suggests that the subset of the nosZ-containing community we sampled largely responded to broad drivers
of bacterial diversity, even though nosZ community composition did not display the same patterns as
compositions based on taxonomic or functional gene abundances.

1.4.3 Characterization methods detected different abundances of specific groups

The abundance of specific bacterial groups was more influenced by interannual and cropping system
effects in the SMG sequences than the 16S rRNA amplicon sequences. There were phylum-level
abundance differences between the cropping systems in the SMG data that were not present in the
amplicon data, but the inverse was not true. SMG-derived 16S rRNA sequences have several advantages
over amplicon sequences, notably in the avoidance of primer biases (Logares et al., 2013). Primer biases
were likely behind the underrepresentation of Actinobacteria in our 16S rRNA amplicon data. Fierer et al.
(2012) found a similar underrepresentation of Actinobacteria in amplicon data, albeit using a different
16S rRNA region. Although abundance of Bacteroidetes and Firmicutes did not differ markedly between
methods, only SMG data detected cropping system differences in their abundance. The increased
abundance of y-Proteobacteria in the 2010 continuous corn soils stands as an interesting counterpoint, as
this dynamic was present in both datasets. It seems reasonable that y-Proteobacteria were similarly well
detected by both methodologies, and further implies that many responses to cropping system and
interannual effects occur in bacterial groups that were less well detected by our amplicon sequencing.

The interpretation of certain PLFASs as indicative of Gram-positive or Gram-negative bacteria is

problematic, both because PLFAs are not strict phylogenetic markers (Frostegard et al., 2011), and
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because Gram staining is of decreasing utility as a framework for classifying bacteria. Nonetheless, this
terminology remains common in soil microbiology, possibly because these sets of lipids frequently
exhibit coherent and interesting ecological behaviors. Rhizosphere-extracted PLFASs associated with
Gram-negative bacteria are enriched in carbon from plant exudates (Butler et al., 2003), while both sets of
PLFAs can correlate to distinct nitrogen cycling processes in the soil (Balser and Firestone, 2005). In our
earlier study, we found that PLFAs associated with Gram-negative organisms increased in the sown
tallgrass prairie while PLFASs associated with Gram-positive organisms were similar for both systems
(Herzberger et al., 2014). In this study, we tested whether these PLFA-based patterns behaved similarly to
DNA from phyla that could be classified as Gram-positive or Gram-negative, finding that the two
methods had entirely different dynamics. This may indicate a mismatch between classification methods,
microbial activity vs abundance, or be another instance of the differences in how PLFAs and DNA
respond to environmental influences (section 4.1). Our findings provide further evidence that comparison
of this set of fatty acids can be an ecologically informative aspect of PLFA profiles. We hope this further
highlights the need to revisit the use of the Gram-negative/-positive framework for interpreting these fatty
acids and the potential utility of identifying the taxa that these biomarkers actually represent.

1.5 Conclusions

The detected soil bacterial community composition of continuous corn and restored tallgrass restored
prairie cropping systems were found to be different by all four characterization methods we employed.
The systems differed more in the composition of their bacterial community biomass, as detected by PLFA
profiling, than in their functional gene or taxonomic compositions as detected by DNA amplicon
sequencing. Differences between the two cropping systems did not increase over the three years that we
sampled the soils. All characterization methods identified some effect of prairie establishment, but with
DNA-based methods interannual variability appeared to have an equivalent impact. Overall community
compositions detected by the alternative methods were fairly well correlated, although abundance

estimates for specific taxa could vary substantially among methods. We found that soil microbial
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communities could change considerably from year to year, but that these changes did not contribute

toward a progressive divergence or convergence between two very different land uses.
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Table 1.1 Factors accounting for multivariate variance from four methods assessing microbial community change over time between corn and
prairie cropping systems

SMG 16S rRNA nosZ
PLFA functional genes amplicon OTUs amplicon OTUs

Factor df SS R? P SS R? P SS R? P SS R? P
Cropping
system 1 0.071 0.62 <0.01 0.001 0.13 <0.01 0.173 0.09 <0.01 0.352 0.15 <0.01
Year 2 0.008 0.07 0.04 0.003 0.23 <0.01 0.361 0.20 <0.01 0.225 0.10 0.05
System x Year 2 0.006 0.06 0.07 0.001 0.08 0.04 0.181 0.10 <0.01 0.069 0.03 0.99
Residuals 24 0.029 0.25 0.007 0.56 1121 0.61 1.682 0.72
Total 29 0.114 0.012 1.00 1.836 2.327

PLFA: bacterial phospholipid fatty acids; SMG: shotgun metagenomic sequencing; OTU: operational taxonomic unit; SS: sum of
squares. Values estimated using adonis. P-values based on 9999 data permutations.
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Table 1.2 Correlations of community distance matrices and nonmetric multidimensional scaling (NMDS) ordinations among four methods of

assessing microbial community composition

Bray-Curtis distance (Mantel statistic) NMDS distance (Procrustes correlation)
Measurement 16S 16S NMDS
type PLFA COGs rRNA nosZ PLFA COGs rRNA nosZ linear R?
PLFA 0.180** 0.168** 0.313*** 0.352* 0.417* 452** 0.999
COGs 0.180** 0.750***  0.461*** 0.352* 0.747***  (0.542*** 0.964
16SrRNA OTU  0.168* 0.750*%** - 0.557*** 0.417* 0.747%** - 0.576%** 0.915
nosZ cluster 0.313***  0.461*** (0.557*** - 0.452** 0.542*%**  0.576***  ---- 0.890

PLFA: bacterial phospholipid fatty acids; COGs: clusters of orthologous groups of proteins, based on shotgun metagenomic sequence.
NMDS linear R? is the coefficient of determination between Bray-Curtis and NMDS ordination distances for all pairs of samples.
Significance of correlation-like statistics was based on 9999 random permutations: * P < 0.05, ** P < 0.01, *** P < 0.001




Table S1.1 Interpretations of PLFAS

Functional group

PLFAs

Gram-negative bacteria

Gram-positive bacteria

Common to bacteria

als:0
i15:0
al7:0
i17:0
16:1w7c
17:0cy
18:1mw5¢
18:1w7¢c
19:0cy
15:0
16:0
16:109c
17:0
alo:.0
i19:0
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© Table S1.2 Primers used for multiplex 16S and nosZ amplicon sequencing
Gene Primer Sequencing adapter Barcode Primer Reference
slt?lfunit 1392R-GS01 ccatctcatccctgegtgtctccgactcag CATCG acgggcggtgtgtRc 1
1392R-GS02 ccatctcatccctgegtgtctccgactcag CATAT acgggcggtgtgtRc 1
1392R-GS03 ccatctcatccctgegtgtctccgactcag CAGCT acgggcggtgtgtRc 1
1392R-GS04 ccatctcatccctgegtgtctccgactcag CAGTG acgggcggtgtgtRc 1
1392R-GS05 ccatctcatccctgegtgtctcecgactcag ACTCT acgggcggtgtgtRc 1
1392R-GS06 ccatctcatccctgegtgtctcecgactcag ACTAC acgggcggtgtgtRc 1
1392R-GS07 ccatctcatccctgegtgtctcecgactcag ACGCG acgggcggtgtgtRc 1
1392R-GS08 ccatctcatccctgegtgtctcecgactcag ACGAT acgggcggtgtgtRc 1
1392R-GS09 ccatctcatccctgegtgtctcecgactcag ACATG acgggcggtgtgtRc 1
1392R-GS10 ccatctcatccctgegtgtctcecgactcag ACAGC acgggcggtgtgtRc 1
1392R-GS11 ccatctcatccctgegtgtctcecgactcag ATCTC acgggcggtgtgtRc 1
1392R-GS12 ccatctcatccctgegtgtctccgactcag ATCGT acgggcggtgtgtRc 1
1392R-GS13 ccatctcatccctgegtgtctcecgactcag ATCAG acgggcggtgtgtRc 1
1392R-GS14 ccatctcatccctgegtgtctcecgactcag ATGTG acgggcggtgtgtRc 1
1392R-GS15 ccatctcatccctgegtgtctcecgactcag ATGAC acgggcggtgtgtRc 1
cctatcccctgtgtgccttggcagtctcag aaactYaaaKgaattgacgg 1
nosZ nosZR-01 ccatctcatccctgegtgtctcecgactcag TCGCTAG  cgSaccttSttgcestYgceg 2
nosZR-02 ccatctcatccctgegtgtctcecgactcag TCGCTAG cgSaccttStigecstYgeg 2
nosZR-03 ccatctcatccctgegtgtctcecgactcag TCGCTAG cgSaccitStigecstYgeg 2
nosZR-04 ccatctcatccctgegtgtctcecgactcag TCGCTAG cgSaccttStigecstYgeg 2
nosZR-05 ccatctcatccctgegtgtctcecgactcag TCGCTAG cgSaccttStigecstYgeg 2
nosZR-06 ccatctcatccctgegtgtctcecgactcag TGCATAG  cgSaccttSttgcastYgeg 2
nosZR-07 ccatctcatccctgegtgtctccgactcag TGTGTAC  cgSaccttSttgcastYgeg 2
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Table S1.2 continued.

Gene Primer Sequencing adapter Barcode Primer Reference

nosZ nosZR-08 ccatctcatccctgegtgtctcecgactcag TGACTGA  cgSaccttStigeestYgeg 2
nosZR-09 ccatctcatccctgegtgtctcecgactcag TACTCGA  cgSaccttStigeestYgeg 2
nosZR-10 ccatctcatccctgegtgtctcecgactcag TATCTCG  cgSaccttStigeestYgeg 2
nosZR-11 ccatctcatccctgegtgtctcecgactcag TATACTG  cgSaccttStigeestYgeg 2
nosZR-12 ccatctcatccctgegtgtctcecgactcag CTCTGAG  cgSaccitStigeestYgeg 2
nosZR-13 ccatctcatccctgegtgtctcecgactcag CTCATGA  cgSaccttStigeestygeg 2
nosZR-14 ccatctcatccctgegtgtctcecgactcag CTGCGAT  cgSaccttStigeestygeg 2
nosZR-15 ccatctcatccctgegtgtctcecgactcag CTGTCGA  cgSaccttStigeestygeg 2
nosZF cctatccectgtgtgecttggeagtctcag cgYtgttcMtcgacagccag 3

1) de Oliveria et al., 2013; 2) Kloos et al., 2001; 3) Throback et al., 2004.




Table S1.3 Single-copy housekeeping COGs used to relativize within samples

28

Sequence

length
COG Function (bp)
COG0016 Phenylalanyl-tRNA synthetase alpha subunit 1005
COG0048 Ribosomal protein S12 387
COG0049 Ribosomal protein S7 444
COGO0051 Ribosomal protein S10 312
COGO0052 Ribosomal protein S2 756
COGO0072 Phenylalanyl-tRNA synthetase beta subunit 1950
COG0080 Ribosomal protein L11 423
COGO0081 Ribosomal protein L1 684
COG0087 Ribosomal protein L3 654
COG0088 Ribosomal protein L4 642
COG0090 Ribosomal protein L2 825
COG0091 Ribosomal protein L22 360
COG0092 Ribosomal protein S3 699
COG0093 Ribosomal protein L14 366
COG0094 Ribosomal protein L5 540
COG0096 Ribosomal protein S8 396
COG0097 Ribosomal protein L6P/L9E 534
COG0098 Ribosomal protein S5 543
COG0099 Ribosomal protein S13 363
COGO0100 Ribosomal protein S11 387
COGO0103 Ribosomal protein S9 390
COGO0127 Xanthosine triphosphate pyrophosphatase 582
COGO0149 Triosephosphate isomerase 753
COGO0164 Ribonuclease HII 597
COG0184 Ribosomal protein S15P/S13E 267
COGO0185 Ribosomal protein S19 279
COGO0186 Ribosomal protein S17 261
COGO0197 Ribosomal protein L16/L10E 438
COG0200 Ribosomal protein L15 456
C0OG0244 Ribosomal protein L10 525
COG0256 Ribosomal protein L18 375
COG0343 Queuine/archaeosine tRNA-ribosyltransferase 1116
COG0481 Membrane GTPase LepA 1809
COG0504 CTP synthase (UTP-ammonia lyase) 1599
COG0532 Translation initiation factor 2 (IF-2; GTPase) 1527
COGO0533 Metal-dependent proteases with possible chaperone activity 1026
COG0541 Signal recognition particle GTPase 1353




Table S1.4 Sequence coverage and diversity statistics by sample
16S amplicon sequencing
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SRA

System Year Block Reads OTUs Rare Coverage Shannon's Chaol Accession
Corn 2010 1 4359 653 139 0.928 5.03 1231.1 SRX969981
Corn 2011 1 3904 681 157 0.914 5.19 1257.8 SRX970055
Corn 2012 1 4602 733 198 0.925 5.18 1219.4 SRX970864
Corn 2010 2 6206 727 239 0.947 476 1262.4 SRX970019
Corn 2011 2 4016 692 208 0.917 5.12 1200.6 SRX970059
Corn 2012 2 3941 635 179 0.927 5.10 1059.7 SRX970866
Corn 2010 3 4652 601 170 0.942 456 1015.1 SRX970030
Corn 2011 3 4391 721 193 0.924 5.18 1196.3 SRX970061
Corn 2012 3 2852 598 114 0.903 524 935.7 SRX970868
Corn 2010 4 3370 545 93 0.924 486 892.2 SRX970034
Corn 2011 4 2741 532 83 0.909 5.14 889.8 SRX970064
Corn 2012 4 3051 532 85 0.921 5.12 845.6 SRX970870
Corn 2010 5 3417 490 82 0.934 470 773.8 SRX970038
Corn 2011 5 3013 572 112 0.914 512 9121 SRX970066
Corn 2012 5 2383 495 93 0.898 497 853.6 SRX970872
Prairie 2010 1 4158 719 222 0.914 511 1274.7 SRX970874
Prairie 2011 1 4462 715 205 0.922 5.07 1211.1 SRX971228
Prairie 2012 1 4211 750 211 0.914 5.15 1226.1 SRX971275
Prairie 2010 2 4121 711 178 0.918 522 1175.1 SRX970878
Prairie 2011 2 3881 690 173 0.914 5.17 11625 SRX971233
Prairie 2012 2 3637 626 150 0.918 5.03 1077.6 SRX971282
Prairie 2010 3 4043 673 169 0.919 5.07 1178.9 SRX970881
Prairie 2011 3 2912 583 98 0.905 516 960.5 SRX971239
Prairie 2012 3 2574 564 77 0.894 5.26 975.0 SRX971291
Prairie 2010 4 2982 564 193 0.910 5.14 958.6 SRX971225
Prairie 2011 4 3094 581 104 0.908 5.08 1030.7 SRX971259
Prairie 2012 4 2777 510 71 0.911 508 917.2 SRX971296
Prairie 2010 5 3548 619 119 0.924 5.17 934.4 SRX970885
Prairie 2011 5 3090 592 110 0.904 519 1109.1 SRX971267
Prairie 2012 5 2714 517 77 0.908 497 871.9 SRX971300
Total 109102 3717 2554 0.985 540 6311.0

Maximum 6206 750 239 0.947 526 1274.7

Minimum 2383 490 71 0.894 456 773.8
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nosZ amplicon sequencing

SRA
System Year Block Reads OTUs Rare Coverage Shannon's Chaol Accession
Corn 2010 1 4173 232 27 0.982 3.74 343.0 SRX970011
Corn 2011 1 5625 270 49 0.981 3.92 386.0 SRX970056
Corn 2012 1 4697 295 47 0.985 3.90 4019 SRX970865
Corn 2010 2 4733 263 47 0.987 3.79 3114 SRX970024
Corn 2011 2 4807 266 44 0.981 3.57 347.3 SRX970060
Corn 2012 2 3742 208 22 0.982 3.52 298.2 SRX970867
Corn 2010 3 5769 261 34 0.987 3.65 362.9 SRX970031
Corn 2011 3 1179 235 28 0.984 3.71 317.1 SRX970063
Corn 2012 3 1521 213 40 0.929 407 3109 SRX970869
Corn 2010 4 6681 175 27 0.955 3.34 259.4 SRX970037
Corn 2011 4 4846 155 16 0.942 3.28 264.8 SRX970065
Corn 2012 4 1389 191 28 0.957 321 287.3 SRX970871
Corn 2010 5 4902 169 15 0.976 3.38 257.5 SRX970040
Corn 2011 5 5106 181 26 0.948 3.33 312.7 SRX970067
Corn 2012 5 1348 150 24 0.940 3.42 246.1 SRX970873
Prairie 2010 1 5938 296 60 0.986 3.89 406.7 SRX970875
Prairie 2011 1 1595 246 37 0.983 3.62 382.1 SRX971232
Prairie 2012 1 1551 265 43 0.985 356 356.4 SRX971277
Prairie 2010 2 4471 248 37 0.985 3.81 349.1 SRX970880
Prairie 2011 2 1641 170 19 0.942 3.69 237.0 SRX971237
Prairie 2012 2 1116 257 36 0.984 3.62 353.9 SRX971287
Prairie 2010 3 1252 222 29 0.934 3.93 359.5 SRX970884
Prairie 2011 3 1212 202 35 0.937 3.83 349.2 SRX971243
Prairie 2012 3 5469 199 26 0.939 3.84 282.0 SRX971293
Prairie 2010 4 1167 164 22 0.943 3.36 2355 SRX971226
Prairie 2011 4 1834 189 28 0.931 3.44 3289 SRX971262
Prairie 2012 4 1190 200 27 0.946 3.46 317.9 SRX971299
Prairie 2010 5 1283 262 54 0.985 3.56 356.9 SRX970886
Prairie 2011 5 2518 164 16 0.934 3.35 275.2 SRX971269
Prairie 2012 5 1503 177 20 0.957 3.33 236.4 SRX971301
94258 1072 641 0.996 3.98 1697.0
6681 296 60 0.987 4.07 406.7
1116 150 15 0.929 321 2355




Table S1.4 cont

Shotgun metagenomic sequencing
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Size Sequences COG sequences JGI Taxon

System Year Block (Gbp) (millions) (millions) 16S sequences Object ID
Corn 2010 1 1.84 9.32 3.76 5285 3300002110
Corn 2011 1 1.86 9.23 3.66 5328 3300002109
Corn 2012 1 1.35 6.63 2.65 2151 3300001694
Corn 2010 2 2.02 10.09 4.04 7924 3300002117
Corn 2011 2 1.86 9.34 3.62 6220 3300002112
Corn 2012 2 1.34 6.54 2.58 2833 3300001693
Corn 2010 3 1.84 9.21 3.74 6352 3300002108
Corn 2011 3 1.47 7.30 2.84 2995 3300001698
Corn 2012 3 1.37 6.70 2.63 2718 3300001695
Corn 2010 4 1.86 9.32 3.72 6296 3300002111
Corn 2011 4 1.39 6.82 2.67 2798 3300001696
Corn 2012 4 1.48 7.27 2.87 3211 3300001697
Corn 2010 5 1.96 9.80 4.03 8135 3300002115
Corn 2011 5 1.56 7.72 3.01 2993 3300001703
Corn 2012 5 1.27 6.22 2.46 2426 3300001691
Prairie 2010 1 1.87 9.40 3.67 5561 3300002113
Prairie 2011 1 1.33 6.50 2.62 2213 3300001692
Prairie 2012 1 1.53 7.51 2.93 2970 3300001700
Prairie 2010 2 1.95 9.89 3.82 5569 3300002116
Prairie 2011 2 1.54 7.55 2.94 3021 3300001701
Prairie 2012 2 1.53 7.65 2.94 2831 3300001702
Prairie 2010 3 1.79 8.97 3.52 4187 3300002107
Prairie 2011 3 1.57 7.75 2.98 2977 3300001704
Prairie 2012 3 1.28 6.14 2.41 2427 3300001690
Prairie 2010 4 1.61 7.91 3.23 3110 3300002106
Prairie 2011 4 1.61 7.99 3.11 3136 3300001705
Prairie 2012 4 1.32 6.48 2.54 2420 3300001745
Prairie 2010 5 1.90 9.47 3.65 5701 3300002114
Prairie 2011 5 1.51 7.52 2.88 3050 3300001699
Prairie 2012 5 1.47 7.19 2.77 2802 3300001747
Total 48.28 239.43 94.29 119640

Maximum 1.27 6.14 241 8135

Minimum 2.02 10.09 4.04 2151
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Table S1.5 Soil physical and chemical properties, 0-10 cm
Year  System Percent carbon (w/w)  Percent nitrogen (w/w) Bulk density (g cm?)

2009 Corn 2.35+0.11 n.s. 0.221+0.012ns. 1.38+0.01c
Prairie 2.31+0.10 n.s. 0.212+0.011ns. 1.37+0.02¢
2013 Corn 2.28 +0.11 n.s. 0.225+0.011 ns. 1.23+0.03b
Prairie 2.38 £0.10 n.ss. 0.228 £ 0.012 n.s. 1.14+0.02a

Unpublished data from GR Sanford and RD Jackson. Values are mean * s.e. and derived from 0-
10 cm soil samples. Unlabeled groups and groups sharing a letter are not significantly different (P
> (0.05).




Table S1.6 Abundances of major bacterial phyla and classes

Amplicon Shotgun F values
Corn Prairie  Corn  Prairie  Method System Interaction
Gram-positive 0.161 0.171 0317 0.316 7465 0 21
Actinobacteria 0.107 0.113 0.280 0.248 9021 1 108
Firmicutes 0.054  0.057 0.036 0.067 36 2 241
Other Gram-positives <0.001 <0.001 0.001 0.002
Gram-negative 0.797 0.795 0.639 0.637 7262 0
Acidobacteria 0.192 0.215 0.124 0.137 2272 2 0
Bacteroidetes 0.061 0.063 0.011 0.018 2690 2 58
Proteobacteria 0.300 0.273 0.313 0.293 70 6 8
a-Proteobacteria 0.136 0.126 0.168 0.154 274 1 0
B-Proteobacteria 0.038 0.039 0.051 0.054 219 0 0
y-Proteobacteria 0.077  0.060 0.055 0.045 370 2 2
Other Proteobacteria 0.049 0.058 0.055 0.063
Verrucomicrobia 0.042 0.052 0.044 0.055 9 6 0

Other Gram-negatives 0202 0192 0.147 0.134

Bolded values indicate statistically significant cropping system differences within a sequencing
methodology (P < 0.05). Amplicon refers to amplicon sequencing of 16S rRNA,; shotgun refers to
shotgun metagenomic sequencing reads annotated as 16S rRNA. Groups comprising > 5% of reads
for at least one system-method combination F values are drawn from ANOVA of a logistic general
linear model with terms of sequencing method, cropping system, and their interaction.
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Figure 1.1 NMDS ordinations of soil microbial communities based on A) PLFA profiling (see Table S1.1
for list of PLFAS); B) shotgun sequenced functional gene abundances; C) 16S rRNA amplicon sequence

OTUs; and D) nosZ amplicon clusters. Line patterns link individual plots sampled over successive years.
Grey areas represent ordination hulls for the two cropping systems.
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Figure 1.2 Proportion of reads assigned to select bacterial phyla and classes detected in 16S rRNA
sequences from S) shotgun metagenomic and A) amplicon sequence data. Bars represent arithmetic
means of five independent samples. Rare taxa are defined as contributing < 5% of the total reads for both
sequencing types.
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Figure 1.3 Ratios of biomarkers associated with Gram-negative and Gram-positive phyla. The PLFA
ratio is based on indicator lipid biomass (see Table S1 for list of PLFASs); DNA-based ratios are derived
from phylum-level assignments of 16S rRNA gene reads from either shotgun metagenomic (SMG) or
amplicon sequencing (phylum details in Table S1.6). Values are arithmetic means (+ 1 standard error) of
logz-transformed ratios. Within a method, groups sharing a letter are not significantly different (P > 0.05).
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Abstract

Soil microbial communities may provide insights into the drivers of variability in nitrous oxide (N2O)
emissions from soils. We used elastic net modelling to explore the relationship between cumulative
annual N,O emissions ins and four microbial biomarker types (membrane lipids, 16S rRNA, nitrous oxide
reductase (nosZ) genes, and functional genes from shotgun sequencing). We conducted this experiment
on two ecologically distinct cropping systems, conventionally managed no-tillage corn, and nonfertilized,
harvested assemblages of tallgrass prairie species, located on a research farm in south-central Wisconsin,
USA. The elastic net modeling approach reduces the risk of overfitting when performing regression with
large numbers of predictors through a combination of coefficient shrinkage and term removal and
employs a mixing parameter (alpha) that regulates the weight given to both components. All biomarkers
except for membrane lipids formed credible elastic net models with corn system N2O emissions, while
only 16S rRNA operational taxonomic units (OTUSs) did so for the prairie system. Functional genes and
16S rRNA OTUs captured both interannual and within-year variability in corn system N2O emissions,
while nosZ OTUs only reflected within-year variability. Models employing 16S rRNA OTUs and
functional genes, but not those using nosZ OTUs, responded to values of the alpha parameter. Individual
biomarkers identified through this modelling approach are unlikely to reflect microbial causes of
variability in N>O emissions, but may instead indicate microbial taxa that are sensitive to environmental
conditions relevant to N,O production. With appropriate knowledge of organismal level physiology and
ecology, this approach may provide insight into overlooked environmental conditions that drive

variability in N2O emissions.
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2.1 Introduction

The production of nitrous oxide (N2O) from soils is one of the key mechanisms by which the agricultural
sector in the United States contributes to global climate change (U.S. Environmental Protection Agency,
2014). Multiple biotic and abiotic factors influence rates of N2O production. Microbially-mediated
processes, notably nitrification and denitrification, are the ultimate source of N,O production in soils
(Braker and Conrad, 2011). Abiotic factors such as temperature, oxygen availability, and substrate
concentrations heavily influence the rate at which these processes occur, and thus are frequently linked to
N0 flux rates (Hénault et al., 2005). Microbial processes can also reduce availability of inorganic
nitrogen substrates (Luxhgi et al., 2006) or consume N.O (Cavigelli and Robertson, 2001), further
complicating matters. As a result, predictive modeling of soil N,O fluxes remains a major challenge (Hu
et al., 2015; Roelandt et al., 2005).

Efforts to understand and model variability in N.O fluxes have largely focused on abiotic factors
(Hénault et al., 2005), as their relationship to N>O production is clearer and they have historically been
easier to measure than microbial communities. However, the key abiotic drivers of N,O flux variability
differ among environments (Dechow and Freibauer, 2011), limiting the scope inference that can be drawn
from purely abiotic data. Incorporating soil microbial information should, in principle, lead to models that
are more accurate and can be applied over a broader range of environments. Some studies link microbial
communities to processes underlying N-O production (Harter et al., 2014; Morales et al., 2010; Németh et
al., 2014), but microbial data do not necessarily improve model performance (Graham et al., 2014). This
is likely part of the broader issue with relating environmental factors and processes: relationships are clear
and straightforward only when the factor of interest heavily constrains the process, while constraint by
other factors obscures any relationship (Hiddink and Kaiser, 2005). Soil N,O emissions may be primarily
related to proximal environmental controls except in cases where the soil microbial community’s
functional capacity becomes limiting (Braker and Conrad, 2011; Wallenstein et al., 2006).

Although microbes are primarily conceptualized and interpreted as causal agents, they may also

serve as sensitive indicators of environmental factors influencing N2O production. Soil microbial
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communities contain substantial genetic and functional diversity (Torsvik and @vreas, 2002). Soil
microbes experience the small-scale heterogeneity of soil, which may be reflected by community
compositions with a nuance that would be lost to standard soil monitoring techniques. Microbiota could
serve as sensitive, integrative biomarkers of environmental health (Ritz et al., 2009; Schloter et al., 2003).
Ecological indicators can be useful for informing management even if they cannot be directly linked to
underlying drivers or processes (Contamin and Ellison, 2009). Overall microbial community patterns,
such as indices created from principal components analysis (PCA) axes, may relate to ecological
processes in ways that the abundance of individual taxa or other markers would not (Balser and Firestone,
2005). We may be able to gain insights into soil N.O dynamics by focusing on the organisms most
directly involved in its production, but there is also much we can learn from organisms that are highly
responsive to environmental factors influencing N.O production.

In this study, we combined previously-published data on N,O emissions (Oates et al., 2016) and
soil microbial community compositions (Duncan et al., 2016) from a bioenergy feedstock cropping
systems study. We focused on the two most ecologically dissimilar systems: a corn (Zea mays L.)
monoculture under conventional no-till management and an annually-harvested assemblage of native
prairie species receiving no agronomic inputs (Sanford et al., 2016). From 2009 to 2011, the corn system
emitted considerably more N2O on an annual basis, reflecting the greater nitrogen inputs it received and
the reduced efficiency with which the plant and microbial components of the system immobilized and
cycled nitrogen (Oates et al., 2016). Daily N,O fluxes in the corn system could be reasonably well
modeled from soil temperature, moisture, and concentrations of NOs™ and NH4*, while fluxes from the
prairie system showed no relationship to these environmental factors. Soil microbial community
membrane lipid profiles, taxonomies of 16S rRNA and the nitrous oxide reductase (nosZ ) gene, and
functional gene profiles differed starkly between the two systems (Duncan et al., 2016). Our objective
with the present study was to explore whether differences in individual microbial biomarkers correlated to

cumulative annual N2O fluxes.
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2.2 Materials and methods

2.2.1 Site description and sampling

This experiment was conducted on the Bioenergy Cropping Systems Experiment (BCSE) at the
University of Wisconsin-Madison Arlington Agricultural Research Station (43° 17' 45" N, 89° 22' 48" W,
315 m a.s.l.) described in detail by Sanford et al. (2016). The site is on highly productive Plano silt-loam
soils (Fine-silty, Mixed, Superactive, Mesic Typic Argiudolls) and from 1981 to 2010 experienced mean
annual precipitation of 869 mm and mean annual air temperature minima and maxima of -14.6 and
27.6°C. The BCSE consisted of eight potential bioenergy feedstock cropping systems grown in 27 x 43-m
(0.12 ha) plots, arranged in a randomized complete block design with five replicates. The corn system
received no-tillage management, with nutrient (NPK) applications based on University of Wisconsin
Extension nutrient recommendations (Laboski et al., 2012) and annual soil tests. The prairie system was
an assemblage of species indigenous to the North American tallgrass prairie (listed in Oates et al., 2016)
receiving no nutrient inputs or agronomic management aside from an annual post-senescence harvest.
Prior to establishment of the BCSE in 2008, the site had been in agricultural production, primarily corn,
soybean (Glycine max L.) and alfalfa (Medicago sativa L.). The blocking structure accounted for
differences in prior land use (Sanford et al., 2016).

Soil sampling for microbial community characterization was conducted in mid-August from 2010
to 2012. Soils were sampled to 15 cm (3.7 cm diameter) matching the depth of annual agronomic soil
tests. All five replicates were sampled, with five cores taken in a staggered transect from each plot, and
homogenized to produce a single composite sample per plot. We sampled soils for microbial community
characterization in mid-August from 2010 to 2012. We sampled to a depth of 15 cm to match the
sampling depth for routine agronomic measurements taken at the site. For each plot, we took 5 cores in a
staggered transect and homogenized them to produce a single composite sample per plot.

2.2.2 Calculating N>O emissions
We reported full details on N>O emissions measurement and calculation in Oates et al. (2016). Briefly,

N>O fluxes were measured using static chambers with an effective headspace volume of ~ 10 L (17 cm
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height) and an insertion depth of 5 cm. Measurements were taken twice monthly throughout the year,
except when soil temperatures were < 0°C, with additional sampling following fertilization and heavy
rainfall events. Daily flux measurements were aggregated by linear interpolation to estimate calendar-year
N.O emissions. Emissions were log-transformed prior to analysis to mitigate over-dispersion.

2.2.3 Microbial community characterization

We reported full details for biomarker extraction, sequence analysis, and repository locations for raw data
in Duncan et al. (2016). For membrane lipid characterization, we employed a combined phospholipid
fatty acid and fatty acid methyl ester extraction method (Balser and Firestone, 2005; Kao-Kniffin and
Balser, 2007) with fatty acid identification using MIDI's EUKARY method database. Fatty acids with
carbon chain lengths >20 were considered plant-derived and excluded from analysis.

Environmental DNA was extracted from 1 g soil samples using SDS, phenol, and bead beating
for cell lysis, phenol-chloroform extraction, and precipitation in sodium acetate-ispopropanol (Stevenson
and Weimer, 2007), with subsequent use of a Power Soil Cleanup Kit (Mo Bio Laboratories, Carlsbad,
CA ) following manufacturer instructions with the optional ethanol rinse.

Amplicon sequencing of 16S rRNA and nosZ employed a Roche 454 GS Junior Titanium
sequencer. We used primers described by de Oliveira (2013) to target the V6-V8 region of the 16S
subunit and the nosZF (Kloos et al., 2001) and nosZ1622R (Throbé&ck et al., 2004) primers to target the
catalytic subunit of nosZ. Processing of 16S rRNA reads was done with mothur v 1.33.3 (Schloss et al.,
2009) with a 200-bp length cutoff, alignment against the SILVVA reference database (Pruesse et al., 2007)
and OTU definition at 95% sequence identity. Following quality filtration in mothur, nosZ amplicons
were analyzed using the Functional Gene Pipeline (Fish et al., 2013): translation with Framebot (Wang et
al., 2013), alignment with Aligner (Cole et al., 2014), and clustering with mcClust (Fish et al., 2013) with
OTU definition at 90% amino acid sequence similarity.

The Department of Energy Joint Genome Institute (JGI) conducted shotgun sequencing of
environmental DNA using the Illumina HiSeq Platform with paired-end 150-bp reads and multiplexing 12

samples per lane. Assembly and annotation were carried out through the standard JGI pipeline, using the
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updated clusters of orthologous groups (COGs) database for functional gene annotation (Galperin et al.,
2015; Tatusov et al., 2003).

2.2.4 Statistical analyses

Analyses were conducted in the R statistical environment (v. 3.3.0, R Core Team, 2016). N,O emissions
were analyzed with the ‘Imer’ function in the Ime4 package (v1.1-12, Bates et al., 2015), with block as a
random effect. Principal components analysis (PCA) was calculated with the ‘rda’ function in the vegan
package (v2.3-5 Oksanen et al., 2013) using raw values for lipid and functional gene data, and square root
transformations for amplicon abundances (following Duncan et al., 2016).

We used regularization to correlate log-transformed N2O fluxes to individual microbial
community biomarkers. This approach imposes a penalty during model fitting to achieve a sparse solution
from a large number of potential predictor terms, attempting to optimize the tradeoff between predictive
power and model bias (Zou and Hastie, 2005). Two forms of regularization are ridge regression, which
retains all terms but greatly reduces coefficient magnitude, and the lasso, which simultaneously drops
terms while selectively reducing their coefficients. We used elastic net modeling, which hybridizes the
two methods by using a mixing parameter (‘alpha’ in glmnet) to weight the combined penalty term
toward either ridge regression or the lasso, as implemented by the glmnet package (v2.0-5, Friedman et
al., 2010). To identify the appropriate weight for the combined penalty term (‘lambda’ in glmnet), we
used leave-one-out cross validation with the ‘cv.glmnet’ function. This function calculates cross-validated
error across the full range of lambda values; we selected the most stringent penalty term within one
standard error of the term that gave the smallest error (‘lambda.1se’ in glmnet) for evaluating model terms
and fit. Model strength was evaluated using the ratio of explained to null deviance (‘dev.ratio’ in glmnet).
To evaluate the strength of these deviance ratios, we generated distributions of deviance ratios from
permuted datasets, permuting flux values within year and running the data through the procedure outlined
above.

We tested for correlations using individual microbial biomarkers (microbial lipid biomass, 16S

rRNA and nosZ amplicon OTU abundances, and COG-annotated shotgun sequencing read abundances).
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We tested the effect of variable selection stringency by varying the alpha parameter from 1.0 (lasso
method) to 0.5 (equal weighting), selecting the lower bound based on Helbling et al. (2015) and a need to
avoid excessive variable retention. To remove rare biomarkers that formed binary (presence-absence)
rather than abundance gradients, we excluded any marker that was not present in at least one replicate in
all study years.

2.3 Results

2.3.1 Sources of variation in N.O emissions

Aggregate annual N2O emissions were substantially higher from the corn system than the prairie system
(Fig. 2.1). Annual mean N2O emissions differed only between 2010 and 2011 in corn, while there were no
statistically significant interannual differences in the prairie system (Fig. 2.1).

Emissions within cropping systems differed substantially among years, although these differences were
not statistically significant in the prairie system, with rank order for years differing between systems (Fig.
2.1). We tested how elastic net modeling represented this interannual variability with models that had
year as the only factor. Across all alpha levels, the model of the corn system retained a term
distinguishing 2011 from 2010, with a deviance ratio of ~0.3 (i.e. explaining approximately 30% of
deviance in aggregate emissions). In the prairie, by contrast, the year variable was dropped, leaving only a
null model. Consecutive-year fluxes from individual plots were weakly correlated in the corn system
(Pearson r = 0.21 for 2010-11 and 0.47 for 2011-12), but more strongly correlated in the prairie (r = 0.69
for 2010-11 and -0.63 for 2011-12).

System-level differences in N2O emissions were matched by system-level differences detected by
all four microbial biomarker types (Duncan et al., 2016). This risked effectively creating a two-point
regression (e.g. Morales et al., 2010), providing little information beyond system-level differences. To
avoid this, we analyzed each system separately, thus focusing on biomarker correlations to within-system
variability. We analyzed years together, as interannual differences were less consistent than those

between systems. However, we included terms for years as potential model predictors.
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2.3.2 Correlation of N2O emissions to microbial biomarkers
In the corn system, N>O emissions could be correlated to all four microbial community biomarkers used,
while in the prairie system only 16S rRNA OTUs produced viable models (Fig. 2.2). We explore
individual marker types in detail below. Overall, DNA-based biomarkers led to models with greater
explanatory power. The alpha parameter, which modulated coefficient shrinkage and removal, did not
affect all measures equally, as is described below. Across alpha levels, models fell within the 85-95"
percentiles of deviance ratios achieved with permuted data. Thus, the explanatory power of these models
was within the range of what was observed when microbial and aggregate emissions data were paired
within year, albeit at the upper end of that range.
2.3.2.1 Membrane lipids
Microbial lipids generated the weakest models, producing deviance ratios that were lower than those
obtained using year as the sole factor (see Section 3.1) and that fell well within the range of values
obtained from permuted data (Fig. 2.2). These models retained a term for year, as well as two lipids,
cisl6:1w7 and 16:1 20H, which were included for alpha values up to 0.8, above which only 16:1 20H
was retained (Table S2.1).
2.3.2.2 16S rRNA amplicon OTUs
The strongest model for the corn system, as well as the only non-null models for the prairie system,
emerged from 16S rRNA amplicon OTU data (Fig. 2.2). Both systems dropped the term for year, but
there was no overlap in the OTUs retained for each system (Table 2.1).

Models of the prairie system retained 2 to 6 OTUs, with the full set of OTUs representing 1.6%
(s.d. £ 0.4%) of all reads (Table 2.1). Dropping model terms in more lasso-like models did not adversely
impact model performance. All OTUs were bacterial, with two Acidobacteria, one each of
Actinobacteria, Chloroflexi, and Gemmatimonadetes, and one unclassified bacterium. Relative abundance
of the Gemmatimonadetes OTU differed significantly between cropping systems, while three OTUs
differed in abundance among years (Table 2.1). Interannual differences strongly influenced multivariate

distributions of these OTUs across both systems.
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Models of the corn system retained 13 unique OTUs, with 7 to 12 OTUs retained in any one
model (Table 2.1), representing 2.8% (s.d. = 1.1%) of all reads. In contrast to the prairie system, alpha
levels influenced model performance, with more lasso-like models performing better up to alpha = 0.9 but
with a sharp drop in performance for the fully lasso model (Fig. 2.2). Retained OTUs included three
representatives from Planctomycetes and Proteobacteria, one from Armatimonadetes, Chloroflexi, and
Gemmatimonadetes, three unclassified bacteria, and the archaeon Nitrososphaera gargensis (Table S2.2).
Relative abundances of eight OTUs differed among years, with six showing consistent interannual
differences for both cropping systems, while four OTUs were differently abundant between cropping
systems. Cropping system and year separately and significantly influenced overall abundance patterns for
retained OTUs retained in the corn system.
2.3.2.3 nosZ amplicon OTUs
In the corn system, amplicons of the nitrous oxide reductase gene nosZ resulted in models nearly as
effective as those from 16S rRNA (Fig. 2.2). Alpha levels had almost no effect on these models, with
only one of eight retained OTUs dropping out (Table 2.2). In contrast to the 16S rRNA models, nosZ
amplicon models retained the term for year. Non-null models could still be constructed without the year
term, but deviance ratios dropped to ~0.3 at all alpha levels. The cumulative abundance of retained OTUs
varied substantially among samples, from 1.2 to 8.0% of all nosZ amplicon reads. All but two OTUs were
negatively correlated to N,O emissions; the two exceptions were present in the fewest samples and had
the lowest relative abundance. Six OTUs most closely resembled uncultured bacteria sequenced from
soils. The closest cultured homologs for five OTUs were from the family Rhizobiales, with another two
OTUs from other Alphaproteobacteria. The remaining OTU matched a Betaproteobacteria of the
Achromobacter genus and was one of the two that were positively correlated to N,O emissions (Table
S2.3). Relative abundances of two OTUs differed significantly among cropping systems and none
differed significantly among years, but overall abundance patterns were influenced by both cropping

system and year.
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2.3.2.4 Functional gene abundances
The alpha parameter heavily influenced models built from functional gene profiles (Fig. 2.2). The number
of retained COGs dropped from 23 at alpha = 0.5 to 6 at alpha = 1.0, with deviance ratios decreasing as
terms were dropped (Table 2.3). Increasing the alpha parameter also increased the proportion of permuted
datasets exceeding the deviance ratio of the real model, indicating the greater model explanatory power at
low alpha values was not simply an artifact of retaining more terms in the model. Retained COGs covered
a broad range of functions, with 13 of the 25 COG functional categories represented (Table S2.4). The
only parameter with obvious links to N,O production was COG3256, annotated as the nitric oxide
reductase large subunit (norB). This COG was retained only at the lowest alpha level and with a very
small coefficient. Curiously, average copy number of this COG by itself correlated strongly to N.O
emissions in the corn system (Fig. S2.1). Average copies per cell differed among years for 15 of the 25
retained COGs; interannual effects for 11 of these were consistent among years (Table 2.3). Eleven COGs
differed in average copy number between cropping systems. Overall patterns for retained COGs were
extremely different among systems and years, with only 34% of multivariate variability occurring within
these groups.
2.4 Discussion
We found that DNA-based measures of soil microbial community composition could explain a large
proportion of the variability in aggregate annual N>O fluxes in a continuous corn cropping system, but not
in a restored prairie. We characterized microbial communities using multiple biomarker types to explore
how different aspects of the microbial community mapped onto variability in soil N.O emissions. The
four biomarker types resulted in distinct dynamics, most notably in how the balance between ridge
regression and lasso penalization terms influenced model performance (discussed in Section 4.2). A far
more important dynamic, however, was the substantial difference in the extent to which the biomarkers
we used were able to model the corn and prairie cropping systems (discussed in Section 4.1).

Before exploring our results at greater depth, we must address the interpretation of individual

biomarkers retained through the modeling process. We sampled microbial communities in mid-August,
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while the major N2O flux events that drove interannual variability occurred earlier in the season (Oates et
al., 2016). We do not know the extent of microbial community turnover that occurred over that time, but
it could potentially be very high (Schmidt et al., 2007). If turnover was high, then the community we
sampled might not be indicative of the community present during periods of high N,O flux and thus the
markers identified would not indicate taxa that drove the N2O production patterns we observed. In this
scenario, the markers identified through elastic net modeling might instead reflect organisms that were
particularly responsive to environmental conditions. Further investigation would be needed to determine
whether soil microbes cause variability in N,O emissions or simply reflect the conditions that drive it. If
microbes function as sensitive integrators of N>O-relevant environmental conditions, they could facilitate
investigation of environmental processes that contribute to variability in N,O production.

2.4.1 Microbial-N,O emission correlations differ fundamentally between corn and prairie

The most consistent trend in our study was the complete dissimilarity between the corn and prairie
systems, particularly the difficulty with generating meaningful models for the prairie. This dynamic
follows prior observations that key abiotic drivers of N2O flux differ among agroecosystems (Dechow and
Freibauer, 2011; Oates et al., 2016). Fundamental differences in nitrogen cycling and availability likely
drove this difference in N>O dynamics. The corn system received large pulses of inorganic nitrogen
which, if combined with high soil moisture and reasonably high temperature, could result in high-
intensity, low-duration flux events (Molodovskaya et al., 2012) during which N,O production might be
limited by the soil microbial community's collective metabolism. In contrast, the prairie system received
no exogenous nitrogen, so all inorganic nitrogen availability depended on mineralization of organic
nitrogen governed by complex soil-plant-microbe interactions (Gliessman, 2007). The focus of N,O
emissions as responses may complicate the matter. More fundamental ecosystem properties such as
potential denitrification (Yin et al., 2014) or N»:N2O ratios (Domeignoz-Horta et al., 2015) may respond
more directly to microbial activity, exploring whether cropping systems differences extend beyond the

level of nitrogen inputs.
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Despite the limitations in our approach, our findings suggest interesting and potentially
fundamental differences in the nitrogen cycling processes underlying N>O emissions variability in the two
systems. Both systems produced workable models using 16S rRNA OTUs, allowing us to infer coarse
patterns in nitrogen cycling from the taxonomic identity of retained OTUs. Variability in N2O emissions
in the prairie system appeared heavily linked to growth conditions benefitting certain denitrifying taxa, as
all retained OTUs with taxonomic information were potential denitrifiers. Contrast this to the corn
system, which had its share of denitrifiers but also retained OTUs from organisms potentially capable of
nitrification and dissimilatory nitrate reduction to ammonia (DNRA). This suggests a more complex
ecology of nitrogen cycling in the corn system, at least inasmuch as related to N,O production. This
possibility runs counter to the dominant view of agricultural management, and exogenous nutrient
addition in particular, as a force that reduces ecological complexity in agroecosystems (Cassman et al.,
2002; Gliessman, 2007), and illustrates how microbial indicators may inform more nuanced views of
ecosystem function.

2.4.2 Interpreting individual biomarker predictors

The three biomarker types that generated reasonable models for the corn system differed in their retention
of an explicit term for interannual differences and in their response to the mixing parameter alpha. In both
cases, the 16S rRNA OTUs and COGs behaved differently from nosZ OTUs. This is perhaps
unsurprising, as prior studies show correlations at the community level between compositional similarity
and functional gene abundances patterns (Duncan et al., 2016; Fierer et al., 2012). Moreover, the nosZ
amplicons captured a much narrower subset of the microbial community than the other two biomarker
types, ignoring denitrifiers lacking the nosZ gene (Philippot et al., 2011) as well as those possessing
atypical forms of the gene (Orellana et al., 2014). This did not, however, prevent generation of reasonably
good models from nosZ OTU data. In contrast, lipid membrane profiles failed to generate credible
correlations. This was surprising, given the greater responsiveness of lipid data to environmental

influences (Duncan et al., 2016; Liang et al., 2016). The limited phylogenetic specificity of this biomarker
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likely restricted it to reflecting broad impacts on the microbial community, while the environmental
drivers that influenced N2O production appear to be visible with more narrowly-defined groups.

Both the 16S rRNA OTUs and COGs captured interannual variability without needing to use year
as a discrete term. These biomarker types exhibited greater overall interannual variability in this system
(Duncan et al., 2016), suggesting taxonomic composition and functional gene profiles respond to
interannual variability. Many, but not all, markers retained in the models differed significantly among
years. However, partitioning interannual effects among multiple terms proved more efficient than
representing them with a single term, strongly suggesting these factors were not simply proxies for
interannual variability. This contrasts sharply with the nosZ OTU model, which needed to retain an
explicit term for interannual variability and for which retained terms did not differ in abundance among
years. The retained nosZ OTUs thus reflected within-year variability in corn N2O emissions, rather than
interannual effects.

Biomarker types also differed in how their model performance responded to alpha values, which
determined how strongly the elastic net penalization terms resembled those from either ridge regression or
the lasso. A key dynamic to keep in mind is the lasso's tendency to retain single exemplars from groups of
correlated terms while discarding the rest, in contrast to the greater inclusion of terms with more ridge
regression-like penalization (Zou and Hastie, 2005). Terms retained at high alpha values represented
largely independent gradients of community composition, and may thus have reflected similarly
independent environmental factors. This further complicates interpretation of individual terms, as it is
unclear whether they reflect a unique dynamic or are simply the best example of a constellation of
similarly-behaving terms. Changes in term retention and their effect on model performance across
multiple alpha values may help with interpretation. With nosZ OTUs, alpha levels barely influenced
model structure or performance. The COGs were completely different, as increasing alpha values sharply
decreased both the number of terms and model performance. The 16S rRNA OTUs provide perhaps the
most interesting case. Removing terms improved model performance until the last alpha value, where

impactful terms were removed and model performance dropped sharply. Overall, this approach suggests
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that environmental gradients driving variability in corn system N2O production can be approximated by
abundances f relatively few N>O reducers or bacterial taxa. Encompassing these gradients with COG
abundances appears to require a larger number of weakly-related terms. This may reflect a lack of
specificity in COG data, as multiple taxa with distinct ecological niches may all contribute to the
abundance of a specific COG.

This study serves primarily to determine that some linkage exists between microbial community
composition and variability in N2O production. Exploring that linkage in detail requires detailed
knowledge of the physiology and ecology of the taxa underlying that linkage. Generating this information
lies beyond the scope of this study, but it is possible to illustrate how this approach might work using taxa
from the 16S rRNA models. One of the OTUs from the corn system shared strong homology with
Nitrososphaera gargensis, an ammonia oxidizing Archaea (AOA) with some flexibility in its ammonia
sources (Spang et al., 2012). As a group, AOA are frequently less responsive than their bacterial
counterparts to cropping system and fertilizer effects, but function at lower ammonia concentrations
(Carey et al., 2016). A more ecologically-responsive AOA might serve to track nitrification-relevant
ammonia or pH values. The prairie retained OTUs for Acidobacteria and Actinobacteria, which are
frequently capable of N2O production but not reduction (Ahn et al., 2014; Palmer and Horn, 2012; Shoun
et al., 1998; Ward et al., 2009). One of the Acidobacteria identified in the prairie (OTU00021, identified
as iii1-8) increases in abundance with increasing soil pH (Kim et al., 2014). Soil pH exerts strong, if
frequently overlooked, controls over denitrification (Liu et al., 2013; Russenes et al., 2016) and such pH-
sensitive organisms may reflect biologically-relevant trends in that regard. Far more organismal
knowledge is clearly needed to fully interpret patterns like those we observed, but this approach may be
useful to generate hypotheses and identify organisms for further, focused study.

2.5 Conclusions
We used elastic net modeling to correlate aggregate annual soil N,O fluxes from two ecologically distinct
bioenergy cropping systems to multiple biomarkers commonly used to characterize microbial

communities. Strong relationships were observed for DNA-based biomarkers in the corn system, while
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only a weak relationship with 16S rRNA OTUs was observed in the prairie system, suggesting both that
biomarker types reflected different functional aspects of microbial community composition and that the
linkage between microbial communities and N»O emissions differed between the two cropping systems.
The extent to which elastic net models employed lasso-like predilections for eliminating terms influenced
the performance of models using 16S rRNA OTUs and COG-annotated functional genes, but barely
impacted performance of models using nosZ amplicons. The biomarkers identified through this approach
appear to be best interpreted as indirect indicators of environmental conditions driving variability in N.O
production, rather than as signs of microbial agents directly causing that variability. While this approach
cannot directly link microbial community composition to N>O production in soils, it may provide insights
into environmental controls of the process which might not be detectable through other methods.
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Table 2.1 16S rRNA OTUs correlated to soil N.O emissions through elastic net modeling

Elastic net coefficients . e
Variance partitioning

(by alpha value) Abundance

System  Phylum Biomarker 0.5 0.75 1.0 Incidence (% of total reads) System Year ~ SxY
Corn Armatimonadetes 0OTuU0162 -85.8 -93.1 -71.4 12 0.14 +0.08 0.01 0.37 0.02
Chloroflexi 0TU0224 6.5 14 0.09 £ 0.04 0.22 0.20 0.02
Crenarchaeota OTU0476 -66.3 8 0.04 £0.02 0.02 0.01 0.04
Gemmatimonadetes 0TU0354 -228.1  -206.6 -217.0 10 0.05+£0.03 0.00 0.03 0.03
Planctomycetes OTuU0114 2.1 14 0.16 £0.11 0.03 0.23 0.02
0OTU0152 27.8 15 0.14 +0.09 0.11 0.31 0.11
0OTU0235 77.5 99.4 90.9 11 0.15x0.12 0.26 0.26 0.20
Proteobacteria OTU0016 4.8 4.8 15 1.12 £ 0.56 0.03 0.39 0.04
0OTU0032 24.2 31.4 30.1 15 0.62 + 0.56 0.02 0.33 0.17
OTU0098 -1195 -167.2 -138.2 15 0.23+0.13 0.07 0.62 0.03
Unclassified 0TU0164 -119.7 -188.4 -83.1 14 0.11 £ 0.06 0.00 0.09 0.01
0TU0245 -140.0 -166.0 -80.7 9 0.07 £0.04 0.15 0.01 0.09
0OTU0430 -41.7 -28.4 8 0.04 £0.02 0.02 0.12 0.04
Total 2.76+1.10 0.10 0.26 0.05
Prairie Acidobacteria 0OTu0021 7.8 4.8 3.3 15 0.86 +0.27 0.03 0.22 0.05
0OTU0120 90.6 87.9 93.2 15 0.17 £0.07 0.09 0.20 0.03
Actinobacteria OTuU0383 8.7 10 0.04 £0.03 0.06 0.05 0.03
Chloroflexi OTU0091 23.9 18.2 16.1 15 0.20+£0.14 0.00 0.24 0.17
Gemmatimonadetes 0OTuU0043 6.3 1.7 15 0.33+0.11 0.28 0.11 0.08
Unclassified 0OTU0393 -391.2 -406.1 -438.1 8 0.03+£0.03 0.00 0.14 0.01
Total 1.63 +0.45 0.06 0.17 0.05

Incidences and abundances were calculated within cropping systems, with abundance presented as mean + sd. Variance ratios are the proportion
of total variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple comparisons). Coefficients over broader alpha
values and full taxonomic information are presented in Table S2.2.
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Table 2.2 nosZ OTUs correlated to corn system soil N.O emissions through elastic net modeling
Elastic net coefficients

Family Biomarker Gyalphavalue) o ooy
0.50 0.75 1.00 System  Year SxY

Year (2011) -0.3 -0.4 -0.5

Burkholderiales 0OTU0027 181.3 217.1 258.4 11 0.17 £0.07 0 0.18 0.01

Rhizobiales 0OTU0010 -29.1 -24.8 -20.8 14 0.40+0.21 0.07 0 0.15
0OTU0021 -5.3 -6.2 -10.9 15 1.19+0.83 0.23 0.02 0.03
0OTU0040 -6.0 15 0.57£0.30 0.01 0.03 0
OTU0074 -18.6 -13.1 -7.1 14 0.49£0.23 0.48 0.1 0.03
0OTU0085 -7.9 -4.9 -2.8 15 0.86 £ 0.58 0.02 0.17 0.06

Rhodobacterales 0OTU0165 148.3 168.0 159.7 12 0.11+£0.06 0.01 0.01 0.08

Rhodospirillales OTU0158 -38.0 -36.5 -27.8 14 0.18 +0.19 0.03 0.12 0.04
Total 3.83+1.64 0.15 0.12 0.07

Family is for the closest BLASTX homolog with taxonomic identity; the closest homolog to most OTUs was uncultured. Incidences and
abundances were calculated for the corn system, with abundance presented as mean * sd. Variance ratios are the proportion of total
variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple comparisons). Coefficients over broader alpha
values and full taxonomic information are presented in Table S2.3.
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Table 2.3 COGs correlated to corn system soil N2O emissions through elastic net modeling

Elastic net coefficients . .
Variance partitioning

(by alpha value) Abundance
Functional category Biomarker 0.50 0.75 1.00 (copiescell't) Systtm Year  SxY
Translation, ribosomal structure and biogenesis COG0013 0.08 0.99 +0.02 0.00 0.50 0.04
CO0G0220 0.9 0.3 050+0.03  0.08 0.48 0.14
COG1576 0.5 0.0 0.36+0.04 0.03 0.55 0.03
COG3642 -1.0 -0.1 0.22+0.02 0.37 0.23 0.02
Signal transduction COG2114 -0.1 -0.1 6.79+052 0.31 0.32 0.11
CO0G2197 -0.004 12.10+0.40 0.26 0.34 0.04
COG2206 -0.04 1.68+0.08  0.00 0.11 0.26
COG5170 -1.7 0.01+£0.00 0.25 0.25 0.03
Cell wall/membrane biogenesis COG3065 2.0 2.4 1.9 0.07+0.02 0.00 0.40 0.03
Energy production and conversion COG0374 4.4 4.4 27 0.14+001 0.10 0.03 0.25
COG1141 -0.8 -0.7 0.1  055+0.07 0.10 0.35 0.06
Nucleotide transport and metabolism COGO0563 -1.1 -0.9 1.38+0.05 0.02 0.03 0.13
Carbohydrate transport and metabolism COG0120 2.3 2.7 2.7 0.38+0.03 0.0 0.36 0.04
Coenzyme transport and metabolism COG3165 1.9 1.2 0.05+0.01  0.08 0.12 0.02
Lipid transport and metabolism COG1260 -1.0 0.70+0.02  0.06 0.12 0.06
Inorganic ion transport and metabolism COG1055 2.6 3.1 24 030+003 0.00 0.32 0.07
COG1393 0.02 0.60+0.08  0.00 0.50 0.05
COG3256  0.0002 0.24+0.03  0.05 0.60 0.10
Secondary metabolite biosynthesis and transport  C0OG2312 1.6 0.8 0.27 £0.02 0.14 0.22 0.00
General prediction C0OG3694 -0.6 0.2 0.26+0.03 0.20 0.46 0.01
COG4589 -0.6 0.29+0.02 0.30 0.02 0.14
Function unknown COG0700 -5.9 90 -136 011+0.01 0.14 0.12 0.12
COG1315 -3.9 0.01+0.00 0.07 0.10 0.06

Copies per cell were estimated by normalizing by COG model length, then normalizing against 37 single-copy housekeeping genes, presented
as mean + sd. Variance ratios are the proportion of total variance attributable to a factor, for bolded values P < 0.05 (not corrected for multiple
comparisons). Coefficients over broader alpha values and CG names are presented in Table S2.4.
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Table S2.1 Coefficients and taxonomic information for microbial membrane lipids correlated to soil N2O emissions in prairie samples through
elastic net modeling

alpha values Abundance Biological
System Biomarker 0.5 06 07 08 09 1.0 Incidence (mol%o) interpretation
Corn Year (2011) -04 -04 -04 -04 -04 -04
16:1 20H 89.6 934 878 736 550 116 13 1.2+05 None
16:107¢ 10.0 9.0 6.7 3.2 15 6.1+2.1 Gram-negative bacteria

Lipid inerpretations based on Balser et al., 2000, referenced in manuscript. Incidence and abundance are calculated for corn
samples, abundance is a percentage of all microbial lipids, presented as mean =+ sd.




3 Table S2.2 Taxonomic information for 16S rRNA OTUs correlated to soil N-O emissions in prairie samples through elastic net modeling

System  Marker Kingdom Phylum Class Order

Corn Otu00016  Bacteria(100)  Proteobacteria(100) Betaproteobacteria(100) unclassified(100)
Otu00032  Bacteria(100)  Proteobacteria(100) Betaproteobacteria(100) unclassified
Otu00098  Bacteria(100)  Proteobacteria(100) Gammaproteobacteria(100)  Legionellales(100)
Otu00114  Bacteria(100)  Planctomycetes(100) Planctomycea(100) Pirellulales(100)
Otu00152  Bacteria(100)  Planctomycetes(100) Planctomycea(100) Gemmatales(100)
Otu00162  Bacteria(100)  Armatimonadetes(100) CH21(100) unclassified(100)
Otu00164  Bacteria(100)  unclassified unclassified unclassified
Otu00224  Bacteria(100)  Chloroflexi(100) Thermomicrobia(100) Sphaerobacterales(100)
Otu00235  Bacteria(100)  Planctomycetes(100) Planctomycea(100) Gemmatales(100)
Otu00245  Bacteria(100)  unclassified unclassified unclassified
Otu00354  Bacteria(100) Gemmatimonadetes(98)  Gemmatimonadetes(98) Gemmatimonadales(98)
Otu00430  Bacteria(100)  unclassified(92) unclassified(92) unclassified(92)
Otu00476  Archaea(100)  Crenarchaeota(100) Thaumarchaeota(100) Nitrososphaerales(100)

Prairie  Otu00021  Bacteria(100)  Acidobacteria(100) Holophagae(99) DS-18(99)
Otu00043  Bacteria(100) Gemmatimonadetes(100)  Gemmatimonadetes(100) Gemmatimonadales(100)
Otu00091  Bacteria(100)  Chloroflexi(99) Anaerolineae(89) unclassified(89)
Otu00120  Bacteria(100)  Acidobacteria(98) Acidobacteria(98) Acidobacteriales(98)
Otu00383  Bacteria(100)  Actinobacteria(100) Actinobacteria(100) 0319-7L.14(100)

Otu00393  Bacteria(100)  unclassified(90) unclassified(90) unclassified(90)




<

) Table S2.3 Taxonomic information for nosZ OTUs correlated to corn system soil N2O emissions through elastic net modeling

Closest

BLASTX hitin

NCBI with

Representative taxonomic Percent
Biomarker sequnce ID information identity Class Family Species
OTU0010  1C3ZW2301CM10T DEORYDOKO015 97% Alphaproteobacteria  Rhizobiales Bradyrhizobiaceae bacterium
OTU0021  ICWNDJHO1AL55P DEOY2Y8COIR  100% Alphaproteobacteria  Rhizobiales Bradyrhizobium japonicum
OTu0027 ICWNDJHO1DE30O  DE17YZR1015 76% Betaproteobacteria Burkholderiales  Achromobacter sp.
OTU0040  ICWNDJHO1BKTTL DEJ6DMTUO14  85% Alphaproteobacteria  Rhizobiales Bradyrhzizobium
oligotrophicum

OTU0074  IC3ZW2301DRKQO  EE6J5360014 93% Alphaproteobacteria  Rhizobiales Microvirga vignae
OTU0085 ICWNDJHO1B3FOV DEJ7/NTGX014  93% Alphaproteobacteria  Rhizobiales Sinorhizobium meliloti
OTU0158 ICWNDJHO1IBCNOT  DEJ8TOWZ014  98% Alphaproteobacteria  Rhodospirillales  Skermanella aerolata
OTU0165  IC3ZW2301DFH6S DEJNIUYYOIR 78% Alphaproteobacteria  Rhodobacterales Paracoccus sp



http://www.ncbi.nlm.nih.gov/protein/255519437?report=genbank&log$=prottop&blast_rank=28&RID=DE0RYD0K015
http://www.ncbi.nlm.nih.gov/protein/654674653?report=genbank&log$=prottop&blast_rank=1&RID=DE0Y2Y8C01R
http://www.ncbi.nlm.nih.gov/protein/336092345?report=genbank&log$=prottop&blast_rank=94&RID=DE17YZR1015
http://www.ncbi.nlm.nih.gov/protein/505483095?report=genbank&log$=prottop&blast_rank=10&RID=DEJ6DMTU014
http://www.ncbi.nlm.nih.gov/protein/827103812?report=genbank&log$=prottop&blast_rank=1&RID=EE6J5360014
http://www.ncbi.nlm.nih.gov/protein/505055126?report=genbank&log$=prottop&blast_rank=1&RID=DEJ7NTGX014
http://www.ncbi.nlm.nih.gov/protein/764626011?report=genbank&log$=prottop&blast_rank=9&RID=DEJ8T0WZ014
http://www.ncbi.nlm.nih.gov/protein/648463747?report=genbank&log$=prottop&blast_rank=37&RID=DEJN1UYY01R

@ Table S2.4 Coefficients and functional information for COGs correlated to corn system soil N20O emissions through elastic net modeling

Function

Biomarker class COG name

COG0013 J Alanyl-tRNA synthetase

COG0120 G Ribose 5-phosphate isomerase

COG0220 J tRNA G46 methylase TrmB

COG0374 C Ni,Fe-hydrogenase | large subunit

COG0563 F Adenylate kinase or related kinase

COGO0700 S Spore maturation protein SpmB (function unknown)

COG1055 P Na+/H+ antiporter NhaD or related arsenite permease

CoGl141 C Ferredoxin

COG1260 | Myo-inositol-1-phosphate synthase

COG1315 S Uncharacterized conserved protein, DUF342 family

COG1393 P Arsenate reductase and related proteins, glutaredoxin family

COG1576 J 23S rRNA pseudoU1915 N3-methylase RImH

cCoG2114 T Adenylate cyclase, class 3

COG2197 T DNA-binding response regulator, NarL/FixJ family, contains REC and HTH
domains

COG2206 T HD-GYP domain, c-di-GMP phosphodiesterase class Il (or its inactivated
variant)

C0G2312 Q Erythromycin esterase homolog

COG3065 M Starvation-inducible outer membrane lipoprotein

COG3165 H Ubiquinone biosynthesis protein UbiJ, contains SCP2 domain

COG3256 P Nitric oxide reductase large subunit

COG3642 J tRNA A-37 threonylcarbamoyl transferase component Bud32

COG3694 R ABC-type uncharacterized transport system, permease component

COG4589 R Predicted CDP-diglyceride synthetase/phosphatidate cytidylyltransferase

COGh170 T Serine/threonine protein phosphatase 2A, regulatory subunit
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Figure 2.1 Aggregate annual N.O emissions by cropping system and year. Data are presented on a
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multiple comparison adjustment)
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Abstract

Soil microbial communities regulate key nutrient cycles in agricultural systems, making them critical for
healthy bioenergy feedstock cropping systems. We used functional gene abundance profiles measured
from shotgun metagenomic sequencing to study how soil microbial communities responded to eight
bioenergy feedstock cropping systems: continuous corn, miscanthus, hybrid poplar, a mixture of native
grasses, in addition to both fertilized and nonfertilized switchgrass and restored tallgrass prairie. These
systems were grown in agronomic trials in south-central Wisconsin (ARL) and southwest Michigan
(KBS). We sampled ARL annually from 2010 to 2012 and KBS in 2012. Microbial community
differences existed between sites, but not among years at ARL, and among cropping systems in all cases
except for 2011 at ARL. Functional gene profile dissimilarities rarely matched ecological differences
among cropping systems, while relative relationships among cropping shifted over site-years. The corn
system at ARL had significantly lower average abundances for all function categories considered,
suggesting smaller average genome sizes, and at both sites exhibited substantial variability in
denitrification pathway gene abundances. Nitrogen fertilization effects were not apparent in functional
gene profiles, abundances within function categories, or abundances of denitrification pathway genes. Our
findings suggest that within-system variability in microbial functional gene abundances outweighs

systematic cropping system influences.
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3.1 Introduction

Soil microbes drive many key ecosystem dynamics, influencing biogeochemical cycles and the
composition and productivity of plant communities (Schnitzer et al., 2011; van der Heijden et al., 2008;
Wagg et al., 2014). Microbially-driven dynamics may be particularly important to cropping systems that
produce biomass feestocks for bioenergy and bioproducts. In contrast to the virtually exclusive focus
placed on production in conventional grain and forage cropping systems, ecological services and
sustainability form a core element of the impetus for bioenergy feedstock cropping systems (Landis et al.,
n.d.; Robertson et al., 2008). These systems are valued and evaluated not only for their productivity
(Sanford et al., 2016), but also for their capacity to provide a number of ecosystem services including
carbon storage (Gelfand et al., 2011; Zenone et al., 2013), mitigation of greenhouse gas emissions
(Hudiburg et al., 2015; Oates et al., 2016), and provision of habitat for desirable animal species
(Robertson et al., 2011, 2012; Werling et al., 2014). Much of the rationale for the sustainability and
desirability of bioenergy feedstock cropping systems is predicated on their reduced requirements for
exogenous nutrients, agricultural chemicals, and other management inputs (Dale et al., 2014; Tilman et
al., 2006). This combination of broader ecological demands and reduced inputs requires greater resilience
and resource-use efficiency, which in turn relies heavily on the interactions of plants, microbes, and
management activities (Bardgett and McAlister, 1999).

Understanding the forces that shape soil microbial communities is critical for learning how to
manage them. In principle, ecosystem properties should exert clear directional effects on soil microbial
community composition. Differences in plant species and variety can select directly for particular taxa
(Berg and Smalla, 2009; Kowalchuk et al., 2002) or more indirectly influence the selective environment
via their influence on energy and nutrient cycles (Butler et al., 2003; Pathan et al., 2015). Exogenous
nutrients, particularly nitrogen, greatly impact particular taxa (Fierer et al., 2012a; Leff et al., 2015). At
the same time, soil microbial communities can prove exceedingly slow to change, reflecting land use
legacies more than present conditions (Jangid et al., 2011). Cropping system effects may also be

dampened or magnified by interannual variability (Smith et al., 2015) or by environmental factors
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unrelated to cropping system differences (Mao et al., 2013). While high ecological dissimilarity simplifies
detection of coarse, systematic differences in microbial community composition (Fierer et al., 2012b),
exploring more subtle, yet significant, differences in composition may require systems with less
overwhelming ecological differences.

The motivation to study microbial community compositions largely presupposes that
compositional changes translate to changes in ecosystem-level functioning. While fully understanding this
linkage remains one of the grand challenges of microbial ecology (Torsvik and @vreas, 2002), there is
growing appreciation of the functional differences among microbial communities and of how these
differences may influence ecosystem processes. For example, diversity of organisms capable of reducing
nitrous oxide (N20) influences the ratio of N.O:N. produced during denitrification (Domeignoz-Horta et
al., 2015). Community composition and function may be more closely linked in processes conducted by
smaller, less diverse groups of microorganisms (Levine et al., 2011), although aggregate community-level
differences among ecosystems have also been observed for broader traits, such as microbial growth
efficiency (Lee and Schmidt, 2014). While this variability in microbial community functional capabilities
is increasingly represented in process-based models, generation of empirical data on these functions
remains a major bottleneck (Wieder et al., 2014).

Functional gene characterization provides a powerful tool for exploring and predicting
differences in microbial community capabilities, particularly when information on individual taxa and
their capabilities is limited. Gene-targeted methods, such as gPCR, allow for determination of the
abundances of specific genes of interest (e.g. Mao et al., 2013). Even with recent advances in throughput
(Devonshire et al., 2013), this approach still limits the number of genes that can be analyzed at once.
Functional gene microarrays (e.g. He et al., 2010) permit simultaneous quantification of large numbers
genes, but are still limited in scope to sequences sharing substantial homology to pre-defined sets of
probes. In contrast, shotgun metagenomic sequencing largely avoids dependence on gene targeting; as its
throughput has increased and its costs have decreased, it is an increasingly attractive alternative for

characterizing functional gene abundances (Eisen, 2007; Tringe et al., 2005). Shotgun sequencing can
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identify novel or atypical forms of functional genes which would go undetected by targeted methods
(Orellana et al., 2014; Sanford et al., 2012). Whole or partial genome reconstruction from metagenomic
sequence provides considerable information about both the composition of a community and the genetic
capabilities of its constituents (Tyson et al., 2004). Metagenomic assembly remains a major challenge for
complex microbial communities, such as those found in agricultural and grassland soils (Howe et al.,
2014), but direct annotation of short reads may suffice to infer differences in microbial community
function that are consistent with ecological differences among samples (Fierer et al., 2012b; He et al.,
2015). One frequently-used annotation framework is the Clusters of Orthologous Groups (COGs)
database (Galperin et al., 2015; Tatusov et al., 2003), which identifies genes that are paralogous across
multiple microbial lineages. One advantage of this framework is that individual COGs are further
classified into functional categories, making it possible to track changes in the relative importance of
broad groupings of genetic functions.

We explored how different bioenergy feedstock cropping systems influence the functional gene
profiles of their associated soil microbial communities. Our study was conducted in Bioenergy Cropping
Systems Experiments (BCSEs) situated Wisconsin and Michigan. We sampled near the end of the
growing season, from 2010 to 2012 at ARL and in 2012 at KBS. The BCSES were set up to compare the
productivity and ecological properties of a diverse array of bioenergy cropping systems differing in their
perenniality, plant species diversity, and agronomic management intensity (Sanford et al., 2016). These
systems exhibit considerable differences in their nitrogen cycles, notably in their nitrous oxide emissions
(Duran et al., 2016; Oates et al., 2016). We previously reported significant differences in microbial
community taxonomic and functional gene profiles between the two most ecologically dissimilar systems,
no-tillage continuous corn (Zea mays L.) and a nonfertilzed assemblage of tallgrass prairie species, at the
Wisconsin BCSE (Duncan et al., 2016). Here, we extend that study, analyzing functional gene profiles
derived from shotgun metagenomic sequencing for eight cropping systems at both sites. We addressed
whether functional gene profiles differed systematically among cropping systems, sites, or years and

whether these patterns differed for groups of genes with related functions.
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3.2 Methods

3.2.1 Study design and soil sampling

The DOE-Great Lakes Bioenergy Research Center’s BCSEs were established in 2008. Both BCSEs
contained five replicate randomized complete blocks, with 0.12 ha plots (27- x 43-m) managed with
standard-sized field equipment (full agronomic details in Sanford et al., 2016). We investigated six
systems: continuous no-tillage corn, monocultures of switchgrass (Panicum virgatum L.), miscanthus
(Miscanthus x giganteus), and hybrid poplar (Populus nigra x P. maximowiczii), a native grass mix (five
species), and a restored prairie (assemblage of 18 tallgrass prairie species). Full species lists and variety
information are presented in Table S1 of Oates et al. (2016). The continuous corn system received annual
fertilization based on spring soil tests, with an average of 167 kg N ha? y* (5-14-42 NPK granular starter
fertilizer and 28-0-0 urea-ammonium nitrate side dress). The poplar received a single nitrogen application
in 2010 (210 kg N ha' as 34-0-0 granular ammonium nitrate). The remaining systems received annual
fertilization (56 kg N ha as 34-0-0 granular ammonium nitrate) in a single application in the spring. This
fertilization regime began in 2010 to limit competition from annual weeds while the perennial crops
established. We sampled from a split-plot fertilization experiment superimposed on the switchgrass and
restored prairie systems, with a subplot (10- x 43-m) on the western side of the plots receiving a
contrasting treatment to the main plot. The switchgrass main plots and restored prairie subplots received
annual fertilization while the restored prairie main plot and switchgrass subplot did not.

The Michigan BCSE was established at the Michigan State University W.K. Kellogg Biological
Research Station (KBS, 42 23'47" N, 85 22'26"W, 288 m.a.s.l.). Soils at KBS were predominantly
Kalamazoo loam (Fine-Loamy, Mixed, Semiactive, Mesic Typic Hapludalfs). Mean annual temperature
from 1981 to 2010 was 9.9 °C and mean annual precipitation was 1027 mm (MSCO, 2013). In 2012, the
only year this site was sampled, precipitation between May and September was significantly below the
30-year average (Sanford et al., 2016). Prior to BSCE establishment, the previous crop was alfalfa

(Medicago sativa L.).
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The Wisconsin BCSE was established at University of Wisconsin-Madison Arlington
Agricultural Research Station (ARL, 43 17'45" N, 89 22'48" W, 315 m.a.s.l). Soils at ARL were
predominantly Plano silt-loam (Fine-Silty, Mixed, Superactive, Mesic Typic Arguidolls). Mean annual
temperature from 1981 to 2010 was 6.8 °C and mean annual precipitation was 869 mm (NWS, 2013). Of
the three years sampled, 2010 had above-average precipitation through August, while 2011 and 2012
were at or below the 30-year average during the growing season (Sanford et al., 2016). Blocking at ARL
was designed to control for differences in prior land use, as prior to BCSE establishment blocks A1-A3
were in a corn-soybean (Glycine max L.) rotation while blocks A4-A5 were an alfalfa-orchardgrass
(Dactylis glomerata L.) hay mixture. The miscanthus system was replanted at ARL in 2010 following
severe stand loss during the 2008-09 winter.

Including subplot treatments, eight total systems were sampled in this study: continuous corn,
fertilized and unfertilized switchgrass, miscanthus, poplar, native grasses, old field, and fertilized and
unfertilized prairie. Not all treatments were sampled in all years or at both sites; a full sample list is
presented in Table S3.1. Soils were sampled 2010-08-24, 2011-08-21, and 2012-08-30 at ARL, and on
2012-08-27 at KBS. In each plot, five cores (3.7 cm diameter, 15 cm depth) were collected in a staggered
transect and composited by sieving to 2 mm. Soils were lyophilized and stored frozen at -20 °C.

3.2.2 DNA extraction and sequencing

DNA was extracted from soils using an adaptation of the approach developed by Stevenson and Weimer
(2007) with full details given in Duncan et al. (2016). Soils were ground with liquid nitrogen in a ceramic
mortar to disrupt aggregates. Cell lysis was achieved by a combination of bead beating (0.1-mm silica
zirconia beads, 2 x 10 min at room temperature), phenol (500 ul in a total liquid volume of 1550 ul), SDS
(50 ul) and heat (10 min at 60 °C) in a high salt buffer (100 mM Tris-HCI, 10 mM EDTA, 0.15 M NacCl,
pH 8.0). Samples were separated by centrifugation (16,000 x g for 10 min), with successive washes with
500 ul phenol, 500 pl 1:1 phenol:chloroform, and 500 ul chloroform. DNA was precipitated with 3 M
sodium acetate and isopropanol. All samples were further cleaned with a Power Soil Cleanup Kit (Mo Bio

Laboratories, Carlsbad CA).
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Sequencing was conducted by the DOE Joint Genome Institute using an lllumina HiSeq platform
(IMlumina, San Diego, CA) with 12 samples multiplexed per lane. Reads were assembled using
SOAPdenovo (v 1.05) and called using FragGenScan (v1.16), prokaryotic GeneMark.hmm (v2.8),
Metagenome Annotator (v1.0) and Prodigal (v2.5). For this study, we used annotations from the updated
clusters of orthologous groups (COGs) database (Galperin et al., 2015; Tatusov et al., 2003). Samples
were submitted for sequencing in three batches, with the first batch containing all continuous corn and
nonfertilized prairie samples from ARL. Sequencing data are available through the Genomes Online
Database (https://gold.jgi.doe.gov) under Study ID GS0095510. Project ID numbers and batch
information for individual samples are given in Table S3.1.

3.2.3 Statistical analysis

COG abundances were obtained from the Integrated Microbial Genomes portal
(https://img.jgi.doe.gov/m/), using coverage-based copy number estimates. Assembly rates were
extremely low (<1% of reads mapped), thus unassembled reads dominated our analysis, making this
effectively a direct annotation of short reads. Consequently, we applied the short-read relativization
approach described by He et al. (2015). COG copy numbers were first divided by their consensus
sequence length to give coverage per base, then all COGs were divided by the average coverage of a suite
of universal single-copy housekeeping genes to give an estimate of copy number cell* for each COG.
Housekeeping COGs were excluded from subsequent analyses. Table S3.2 contains information on COG
consensus lengths, housekeeping gene identity, and function categories. COGs involved in denitrification
were identified based on information from He et al. (2015) and Wang et al. (2014) and are described in
Table S3.3.

Analysis was conducted in the R statistical environment (R Core Team, 2014). Multivariate
analysis used the 'vegan' package (Oksanen et al., 2013). Intersample distances were calculated from
estimated COG copy number cell using Bray-Curtis distances. Permutational multivariate analysis of
variance used the ‘adonis’ function. Nonmetric multidimensional scaling (NMDS) ordination was

conducted by chaining 10 calls of the ‘metaMDS’ function for each ordination to increase exploration of
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the solution space. Intersample distances were corrected for metagenome size and batch effects (see
Section 3.1) by using these as predictors in the ‘capscale’ function, and using the residuals from that as
the distance matrix for subsequent ordinations. Means differences in copy number cell* were evaluated
using the packages 'Ime4' (Bates et al., 2015), 'Ismeans' (Lenth, 2013), and 'pbkrtest' (Halekoh and
Hgjsgaard, 2014). Values were square-root transformed prior to analysis to achieve a uniform
distribution of residuals, and back-transformed for display.

3.3 Results

3.3.1 Sequencing effort

We generated 142 shotgun metagenomes from eight cropping systems, spanning 2010 to 2012 at the
Wisconsin site (ARL) and 2012 at the Michigan site (KBS). Metagenomes differed in size, ranging from
0.63 t0 2.93 Gbp, with a median of 1.40 Gbp (Table S3.1). Metagenome size differed among batches of
samples sequenced concurrently (F2,115 = 16.7, P < 0.01); metagenomes from the second batch were ~0.28
Gbp smaller than those from the first and third batches (see Table S3.1 for sample batch information).
Metagenome sizes further differed by year (F2115 = 6.9, P < 0.01), with 2012 having smaller
metagenomes than 2010. Assembly was minimal (<1% of reads mapped onto scaffolds). A subset of 12
samples were sequenced in both the second and third batches. Batch effects are clearly visible, although
the relative arrangement of samples remains relatively consistent in both batches (Fig S3.1).

3.3.2 Site-year effects

Based on permutational multivariate analysis of variance, differences in metagenome size accounted for
3.8% of intersample distances, while differences among sequencing batches accounted for an additional
25.8% (both P < 0.01). Differences between sites accounted for 9.2% (P < 0.01), differences among years
within ARL accounted for 5.8%, and differences among crops accounted for 8.5% of variability (all P <
0.01). Intersample distances (corrected for metagenome size and sequencing batch as detailed in Section
2.3) were reasonably well-represented by two-dimensional nonmetric multidimensional scaling (NMDS,
Fig. 3.1). The study sites separated clearly, if imperfectly, while the three years at ARL overlapped. This

ordination was moderately correlated to the ordination of these data without corrections for metagenome
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size and sequencing batch (Procrustes correlation = 0.75, P < 0.001) which showed effectively the same
trends (Fig. S3.2).

We used Mantel tests to evaluate whether intersample differences remained consistent across
years at ARL. For each pair of years, we built distance matrices from the subset of samples that were
present in both years. The least similar years were 2010 and 2011 (Mantel r = 0.48), while 2012 was more
similar to both 2011 (Mantel r = 0.63) and 2010 (Mantel r =0.70). These correlations were statistically
significant in all cases (P < 0.01).

3.3.3 Cropping system effects

We analyzed variance explained by cropping system effects separately within each site-year (Table 3.1).
After accounting for metagenome size and sequencing batch effects, cropping systems effects were
significant in all cases except for ARL in 2011. Metagenome size and sequencing batch effects differed in
importance among site-years but were consistently significant. Their effect was smallest at KBS in 2012;
KBS samples were sequenced in only two batches, while all three batches were represented in other cases
(Table S3.1).

NMDS ordination revealed cropping systems differences that were inconsistent across site-years,
with relatively low stress levels indicating a reasonable depiction of overall intersample distances (Fig.
3.2). ARL in 2010 most resembled the patterns we expected, with the corn and nonfertilized prairie
systems on opposite ends of a continuum and the fertilized perennial systems occupying an intermediate
space. This pattern was not replicated in other site-years. There were no clear separations among cropping
systems in 2011 or 2012 at ARL, although in 2012 some cropping systems, notably fertilized switchgrass
and both prairies, formed tighter clusters. KBS in 2012 exhibited the greatest cropping system effects,
partially overlapping but still visibly distinct clusters for each system sampled. Notably, ARL in 2010 was
the only case where differences in functional gene profiles matched our expectations based on assumed
ecological differences among the cropping systems.

Intersample distances uncorrected for metagenome size and sequencing batch effects resulted in

very different ordinations (Fig. S3.2). The corn system was a clear outlier in all years at ARL while the
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unfertilized prairie was a similar outlier in 2010 and 2012. These two systems, whose combined samples
constituted the first sequencing batch (Table S3.1), clustered together at ARL, in sharp contrast to what
we observe after correcting for batch effects.

3.3.4 Dynamics of COG function categories by site-year and cropping system

We explored whether COG functional categories followed the same site-year and cropping system
dynamics we observed for the full set of functional genes. We focused on six categories which we
expected a priori would respond to management or other cropping system differences (Table 3.2):
changes in forms and availability of carbon and other nutrients were expected to impact genes involved in
the transport and metabolism of carbohydrates (G) and inorganic ions (P), as well as energy production
and conversion (C), while plant-microbe and microbe-microbe interactions were expected to be reflected
by genes involved in defense (V), signal transduction (T), and processes involving secondary metabolites
(Q). Intersample distances for each category were highly correlated to distances in overall gene profiles
(Table 3.2).

We looked further into within site-year cropping systems dynamics (Table 3.3). Intersample
distances remained highly correlated between the full dataset and function categories, although these
correlations were generally weakest for KBS. Cropping systems effects were greater among genes
involved in signal transduction across site years (Table 3.3); when these were ordinated there was slightly
greater separation of the native grass mixture from the switchgrass and miscanthus systems at ARL in
2010 and KBS in 2012, but otherwise no major changes (Fig. S3.3).

We found few systematic differences in average gene copy numbers within functional categories
among cropping systems (Fig. 3.3). The corn system was a clear outlier at ARL, with the lowest copy
number for all functional categories, although in some instances it was not significantly different from the
unfertilized prairie. In nearly all cases at ARL, the nonfertilized prairie had the second-lowest average
copy number, although frequently it was closer to the perennial cropping systems than it was to corn.

Patterns at ARL were generally consistent across years and function categories. Cropping system effects
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at KBS were much weaker. Copy number averages across all cropping systems did not differ among site-
years.

3.3.5 Denitrification pathway genes

Fold changes in copy numbers of 16 COGs involved in denitrification (Table S3.2) exhibited some
cropping system patterns (Fig. 3.4). The corn system frequently had individual COG copy numbers that
differed from those of other systems within a given site-year. Where function category-level copy number
differences between corn and other systems were smaller at KBS than ARL (Fig. 3.3), denitrification
COG abundances were, if anything, more likely to vary for the KBS corn system (Fig. 3.4). Contrary to
what might have been expected given patterns observed at the level of functional categories (Section 3.4),
the corn system did not have uniformly below-average copy numbers for all COGs, notably in 2012 at
both sites where certain COGs involved in nitrate reduction were more abundant in corn than other
systems. We observed no consistent cropping system-based differences in copy numbers of genes
involved in different stages of denitrification. COGs involved in a particular step of denitrification did not
generally synchronize their relative abundances, although genes involved in nitrous oxide formation and
consumption were broadly above the average abundance at ARL in 2010 and 2012, and below average at
KBS. The two key catalytic genes for these processes, nitric oxide reductase (norB, COG3256) and
nitrous oxide reductase (nosZ, COG4263) were generally less variable among cropping systems within a
site-year than their accessory genes (COG4548 and COG3420).

3.4 Discussion

The cropping systems we characterized fall along an ecological gradient with continuous corn and
unfertilized prairie at its extremes. While our two study sites differed in their geographic location and
environmental properties, the sites themselves covered relatively small, homogenous areas, as befits a
cropping systems trial (Sanford et al., 2016). We conducted our study over three consecutive years, a
short period over which to observe microbial community changes (Allison et al., 2005; Jangid et al.,
2011). We thus expected that any cropping system effects we observed should be relatively consistent

across years and replicate plots. Instead, we found that cropping systems exerted significant, but limited
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and inconsistent influence over functional gene abundance profiles. This suggests that the composition
and functional capabilities of soil microbial communities may respond to factors other than those which
characterize the differences among cropping systems.

Prior to interpreting our findings, we must acknowledge potential biases due to technical and
methodological issues. Our samples were sequenced in three distinct batches (see Section 2.2). We are
aware that the IMG assembly and annotation pipeline differed among batches (Torben Nielsen, personal
communication), as did average metagenome sizes. Functional gene profiles reflected effects of both
batches and metagenome sizes. We corrected these statistically to the extent of our ability, but lingering
batch effects may still have increased variability in our dataset or otherwise influenced our results.

3.4.1 Functional gene profiles differed among cropping systems, but not systematically

We observed differences in soil microbial functional gene profiles among cropping systems in all site-
years except for 2011 at ARL. These differences were, however, relatively small, and rarely resulted in
clearly distinct clusters. Moreover, cropping system effects on functional gene profiles varied across years
and were inconsistent with ecological differences among systems. Ecologically coherent and consistent
cropping system effects on soil microbial communities are common in the literature (Liang et al., 2013;
Mbuthia et al., 2015). In particular, annual agricultural systems reliably differ from grasslands and other
perennial systems (Allison et al., 2005; Mao et al., 2013). We only observed differences between the
continuous corn and unfertilized prairie systems in 2010 at ARL, although overall the corn system
behaved differently from the other systems.

At ARL, the continuous corn system consistently had lower average copy numbers of COGs in
the function categories we studied. Copy numbers were lower for the unfertilized prairie as well, but to a
lesser extent and far less consistently, indicating this was only partially an effect of sequencing batch.
More telling, continuous corn also exhibited the most erratic patterns in denitrification gene abundances
at both ARL and KBS, the latter of which did not suffer from confounded sequencing batch effects.
Previous reports show corn soil microbial communities consistently differing from those of perennial

bioenergy crops (Jesus et al., 2016; Mao et al., 2013). Conventionally-managed annual agricultural
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systems such as corn are characterized by fluxes of nutrients and energy that are large and simplified
(Gliessman, 2007). These systems create high concentrations of resources present over short periods of
time and in a narrow range of forms. These conditions could favor narrower groups of microbial taxa
which can rapidly exploit large, brief, homogenous resource pulses (Bastian et al., 2009; Fierer et al.,
2012a). The broadly lower abundance of functional genes in the corn system could stem from pared down
genomes in these taxa, reported to occur in response to nutrient addition (Leff et al., 2015). Overall, this
suggests the difference between annual and perennial cropping systems is likely greater than the
differences among perennial systems, as other studies have suggested (Jesus et al., 2016; Mao et al.,
2013).

3.4.2 Nitrogen management effects were not reflected in functional gene abundances

Nitrogen fertilizer effects on microbial community composition and activity are broadly consistent in the
literature (Bodelier, 2011; Bradley et al., 2006; Fierer et al., 2012a). We observed similar fertilizer
responses at the agronomic level, with fertilization increasing nitrous oxide emissions in the switchgrass,
native grass, and prairie systems (Duran et al., 2016) and increases soil nitrate concentrations (Chapter 4).
Nitrogen fertilization in the switchgrass and prairie systems substantially reduced biomass of arbuscular
mycorrhizal fungi and Gram-negative bacteria (Oates et al.in revison). Despite this, nitrogen fertilization
exerted no visible influence on functional gene abundances, either in overall patterns or specifically in
denitrification pathway genes. The lack of change may simply reflect the relatively brief duration of the
contrasting fertilization regimes, as Sun et al. (2015) reported diverse responses by nitrogen-cycling genes
to long-term chemical fertilization.

3.4.3 COG function categories recapitulated patterns observed for all COGs

We hypothesized that certain COG function categories might be more or less responsive to differences
among cropping systems and site-years. For instance, greater importance of plant-microbe interactions in
the unfertilized systems might increase the abundance of genes involved in signaling and quorum sensing
(Mitter et al., 2013). The only evidence we saw of this was in the continuous corn system, which had

lower average abundances than other systems in all of the function categories we considered. Not all
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COGs followed category-level trends, however, as we saw several cases where denitrification pathway
COGs were more abundant than average in the corn system, even though it had lower average abundance
of COGs related to inorganic ion transport and metabolism. While this indicates individual COGs within
a category can experience distinct selective pressure, cropping system and site-year differences remained
consistent across functional categories. It is plausible that the COG function category framework is too
broad to capture the selective pressures in our system, and that a distinct level of resolution is necessary to
explore these dynamics.

3.4.4 Taxa rather than individual genes, may reflect key environmental drivers

Metagenomics-based studies frequently take a gene-centric approach to microbial ecology (Kunin et al.,
2008). Gene abundances have been linked to environmental factors (Sun et al., 2015; Yoshida et al.,
2010) as well as process rates (Petersen et al., 2012; Yin et al., 2014), motivating this approach.
Individual microbial genomes contain only a subset of the genes found in their broader taxon (Mira et al.,
2010), while lateral gene transfer provides a mechanism to further blur connections between taxonomy
and function (Lawrence, 2002). This supports focusing on genes, rather than phylogenetically-classified
organisms, as the stuff of selection, a perspective that strongly motivated design of this study. However,
in our system functional gene abundances may not capture the key dynamic elements of microbial
community composition. Other studies conducted on BCSE systems identified more consistent cropping
system effects using PLFA (Oates et al.in revision), amplicons of the nitrous oxide reductase gene nosZ
(Duncan et al., 2016), and targeted assembly of nitrogen-cycling genes (Guo & Tiedje, unpublished
data). All of these approaches reflect taxonomic composition, to differing extents, rather than functional
gene abundance. It may be that in our study system, selection occurs on overall life strategies, rather than
on specific metabolic capabilities. While we conceptualize these cropping systems as possessing
fundamental ecological differences, these differences may not impose strong selection for specific genetic
functions. The major contribution of studies like ours may be the identification of highly responsive
microbial taxa. Isolating representatives of these taxa and studying their physiology could provide insight

into the environmental drivers that matter at the microbial scale.
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3.5 Conclusions

Bioenergy feedstock cropping systems and site-years influenced soil microbial functional gene profiles to
a smaller and less consistent extent than we anticipated. Profiles differed generally between our two study
sites, but did not differ among years at the ARL site. Variability among cropping systems was statistically
significant in most cases, but relative similarities among cropping systems differed among years and
rarely reflected differences in cropping system ecology or management. Notably, nitrogen fertilization
had no visible effects. One possible exception was the corn system, which had lower abundances of
functional genes and greater variability in abundance of denitrification genes. Interpreting this is difficult,
however, given that batches of samples sequenced together shared certain similarities and the corn
samples were sequenced in the same batch. In our study system, selective pressures may act more visibly
upon taxonomic composition, rather than the abundance of individual genes. Nonetheless, functional gene
profiles may provide insight into the environmental dynamics that shape microbial communities at
relatively small spatial, temporal, and ecological scales.
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Table 3.1 Sequencing and cropping system effects on functional gene profiles

Site  Year Factor df Pseudo-F R?

ARL 2010 Batch 2 13.6 0.410 ***
Size 1 1 0.012
Crop 4 3.8 0.229 ***
Residual 23 0.346
2011  Batch 2 9.9 0.347 ***
Size 1 1.6 0.028
Crop 5 1.3 0.113
Residual 29 0.511
2012  Batch 2 14.4 0.394 ***
Size 1 25 0.034*
Crop 6 15 0.121~*
Residual 33 0.451
KBS 2012 Batch 1 9.9 0.213 ***
Size 1 1.3 0.029
Crop 5 2.6 0.284 ***
Residual 22 0.474

Values were calculated using permutational analysis of
variance. Batch indicates the groups of samples that were
sequenced together while Size indicates the amount of
sequence generated for each metagenome. R? values are
sequential (Type 1) and were calculated in the order listed.
Significance was assessed by 9999 unconstrained
permutations:

*P <0.05; ** P <0.01; *** P <0.001




Table 3.2 Properties and sources of variation affecting abundance profiles of COG function categories
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Function COGsin Correlation Proportion of variance explained by:
category category Copies cell! toall COGs  Batch Site Year Crop

All 4594 0.50 (0.46-0.52) 0.287 0.092 0.056 0.086

\% 115 0.50 (0.46-0.52) 0.93 0.363 0.052 0.056 0.078

T 182 1.09 (0.98-1.16) 0.92 0.306 0.090 0.068 0.102

C 274 0.70 (0.65-0.74) 0.91 0.246 0.114 0.056 0.110

G 246 0.57 (0.53-0.60) 0.96 0.328 0.084 0.039 0.092

P 232 0.51(0.47-0.53) 0.95 0.275 0.114 0.047 0.093

Q 97 0.84(0.76-0.92) 0.89 0.283 0.118 0.041 0.118

Function category interpretations: V, defensive mechanisms; T, signal transduction; C, energy
production and conversion; G, carbohydrate transport and metabolism; P, Inorganic ion transport and
metabolism; Q, secondary metabolite biosynthesis, transport, and catabolism. Copy cell* values are
medians with 5 and 95" percentiles in parentheses. Correlations between distance matrices of
function categories and all COGs were calculated with Mantel tests. Variance proportions were
determined by permutational analysis of variance All values listed are significant at P < 0.001.
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Table 3.3 Site-year effects on abundance profiles of COG function categories

Correlation to all COGs

Variance explained by Batch

Function Variance explained by Crop
category ARL KBS ARL KBS ARL KBS
2010 2011 2012 2012 2010 2011 2012 2012 2010 2011 2012 2012
All — — — 0.410 0.347 0.394 0.213 0.228 0.116 0.123 0.283
\% 0.980 0.935 0.947 0.934 0.503 0.411 0.481 0.264 0.204 0.094 0.102 0.251
T 0.970 0.910 0.945 0.918 0.430 0.349 0451 0.242 0.314 0.118 0.124 0.294
C 0.937 0.937 0.939 0.929 0.296 0.302 0.355 0.227 0.270 0.136 0.134 0.289
G 0.986 0.964 0.968 0.963 0.448 0.390 0.456 0.231 0.222 0.115 0.123 0.279
P 0.972 0.966 0.949 0.927 0.369 0.343 0.368 0.242 0.227 0.127 0.118 0.274
Q 0.947 0.894 0.926 0.842 0.309 0.309 0.404 0.149 0.325 0.138 0.151 0.340

Function categories are interpreted in Table 3.2. Variance proportions were calculated using permutational analysis of

variance. Bolded values are not statistically significant (P > 0.05, 9999 permutations).




Table S3.1 Soil metagenome metadata

JGI Size
Site  Crop Year Block Fertilized Project ID (Gbp) Sequences Batch
ARL Continuous corn 2010 A1l Yes 1020957 1.84 9.5E+06 Bl
ARL Continuous corn 2010 A2 Yes 1020960 2.02 1.0E+07 Bl
ARL Continuous corn 2010 A3 Yes 1020963 1.84 9.4E+06 Bl
ARL Continuous corn 2010 A4 Yes 1020966 1.86 9.5E+06 Bl
ARL Continuous corn 2010 A5 Yes 1020969 1.96 1.0E+07 Bl
ARL Restored prairie 2010 A1l No 1020972 1.87 9.6E+06 Bl
ARL Restored prairie 2010 A2 No 1020975 195  1.0E+07 Bl
ARL Restored prairie 2010 A3 No 1020978 1.79 9.1E+06 Bl
ARL Restored prairie 2010 A4 No 1020981 161  8.1E+06 Bl
ARL Restored prairie 2010 A5 No 1020984 190 9.6E+06 Bl
ARL Continuous corn 2011 A1l Yes 1020987 1.86 9.4E+06 Bl
ARL Continuous corn 2011 A2 Yes 1020990 1.86 9.5E+06 Bl
ARL Continuous corn 2011 A3 Yes 1020993 1.47 7.4E+06 Bl
ARL Continuous corn 2011 A4 Yes 1020996 1.39 7.0E+06 Bl
ARL Continuous corn 2011 A5 Yes 1020999 1.56 7.9E+06 Bl
ARL Restored prairie 2011 Al No 1021002 1.33 6.6E+06 Bl
ARL Restored prairie 2011 A2 No 1021005 1.54 7.7E+06 Bl
ARL Restored prairie 2011 A3 No 1021008 1.57 7.9E+06 Bl
ARL Restored prairie 2011 A4 No 1021011 161 8.1E+06 Bl
ARL Restored prairie 2011 A5 No 1021014 151 7.7E+06 Bl
ARL Continuous corn 2012 Al Yes 1021017 1.35 6.8E+06 Bl
ARL Continuous corn 2012 A2 Yes 1021020 1.34 6.7E+06 Bl
ARL Continuous corn 2012 A3 Yes 1021023 1.37 6.8E+06 Bl
ARL Continuous corn 2012 A4 Yes 1021026 1.48 7.4E+06 Bl
ARL Continuous corn 2012 A5 Yes 1021029 1.27 6.3E+06 Bl
ARL Restored prairie 2012 A1l No 1021032 153  7.7E+06 Bl
ARL Restored prairie 2012 A2 No 1021035 1.53 7.8E+06 B1
ARL Restored prairie 2012 A3 No 1021038 1.23  6.3E+06 Bl
ARL Restored prairie 2012 A4 No 1021041 1.32 6.6E+06 B1
ARL Restored prairie 2012 A5 No 1021044 1.47  7.3E+06 Bl
ARL Native grassmix 2010 Al Yes 1032591 1.50 6.9E+06 B2
ARL Old field 2010 A1l Yes 1032594 1.13 5.2E+06 B2
ARL Miscanthus 2010 A1l Yes 1032597 1.06 4.8E+06 B2
ARL Hybrid poplar 2010 A1l Yes 1032600 1.29  5.9E+06 B2
ARL Switchgrass 2010 A1l Yes 1032603 1.35 6.2E+06 B2
ARL Miscanthus 2010 A2 Yes 1032606 1.93 8.9E+06 B2
ARL Switchgrass 2010 A2 Yes 1032609 1.39 6.5E+06 B2
ARL Native grass mix 2010 A2 Yes 1032612 150 7.3E+06 B2
ARL Old field 2010 A2 Yes 1032615 1.25 5.7E+06 B2

ARL Hybrid poplar 2010 A2 Yes 1032618 176  8.1E+06 B2




Table S3.1 cont.

JGI Size
Site  Crop Year Block Fertilized Project ID (Gbp) Sequences Batch
ARL Switchgrass 2010 A3 Yes 1032621 1.36  6.2E+06 B2
ARL Miscanthus 2010 A3 Yes 1032624 1.78  8.1E+06 B2
ARL Native grass mix 2010 A3 Yes 1032627 1.31  6.0E+06 B2
ARL Hybrid poplar 2010 A3 Yes 1032630 1.60  7.4E+06 B2
ARL Old field 2010 A3 Yes 1032633 155  7.1E+06 B2
ARL Hybrid poplar 2010 A4 Yes 1032636 1.19  5.5E+06 B2
ARL Old field 2010 A4 Yes 1032639 125  5.8E+06 B2
ARL Native grassmix 2010 A4 Yes 1032642 122  5.6E+06 B2
ARL Miscanthus 2010 A4 Yes 1032645 139  6.3E+06 B2
ARL  Switchgrass 2010 A4 Yes 1032648 1.34  6.1E+06 B2
ARL Hybrid poplar 2010 A5 Yes 1032651 124  5.7E+06 B2
ARL Native grass mix 2010 A5 Yes 1032654 293  1.3E+07 B2
ARL Switchgrass 2010 A5 Yes 1032657 123  5.6E+06 B2
ARL Old field 2010 A5 Yes 1032660 1.07  4.9E+06 B2
ARL Miscanthus 2010 A5 Yes 1032663 133  6.1E+06 B2
ARL Restored prairie 2011 A1l Yes 1032666 2.02  9.2E+06 B2
ARL Miscanthus 2011 A1l Yes 1032669 151  6.8E+06 B2
ARL Hybrid poplar 2011 A1l Yes 1032672 1.08  4.9E+06 B2
ARL Old field 2011 A1l Yes 1032675 1.07  4.9E+06 B2
ARL Switchgrass 2011 A1l No 1032681 1.13  5.2E+06 B2
ARL Switchgrass 2011 A2 No 1032684 113  5.2E+06 B2
ARL Restored prairie 2011 A2 Yes 1032687 1.44  6.7E+06 B2
ARL Old field 2011 A2 Yes 1032690 148  6.8E+06 B2
ARL Hybrid poplar 2011 A2 Yes 1032693 1.21  5.5E+06 B2
ARL  Switchgrass 2011 A3 Yes 1032696 090  4.2E+06 B2
ARL Miscanthus 2011 A3 Yes 1032699 145  6.7E+06 B2
ARL Restored prairie 2011 A3 Yes 1032702 1.06  5.0E+06 B2
ARL Hybrid poplar 2011 A3 Yes 1032705 1.06  4.8E+06 B2
ARL Old field 2011 A3 Yes 1032708 129  5.9E+06 B2
ARL Hybrid poplar 2011 A4 Yes 1032711 1.25  5.8E+06 B2
ARL Old field 2011 A4 Yes 1032714 136  6.3E+06 B2
ARL Restored prairie 2011 A4 Yes 1032717 1.28  5.9E+06 B2
ARL Miscanthus 2011 A4 Yes 1032720 132  6.1E+06 B2
ARL  Switchgrass 2011 A4 Yes 1032723 0.87  4.1E+06 B2
ARL Hybrid poplar 2011 A5 Yes 1032726 136  6.3E+06 B2
ARL Restored prairie 2011 A5 Yes 1032729 1.32  6.1E+06 B2
ARL Switchgrass 2011 A5 Yes 1032732 136  6.3E+06 B2
ARL Old field 2011 A5 Yes 1032735 153  7.0E+06 B2
ARL Miscanthus 2011 A5 Yes 1032738 133  6.2E+06 B2

ARL Native grass mix 2012 Al Yes 1032741 1.22  5.6E+06 B2




Table S3.1 cont.

JGI Size
Site  Crop Year Block Fertilized Project ID (Gbp) Sequences Batch
ARL Restored prairie 2012 Al Yes 1032744 1.30 6.1E+06 B2
ARL Old field 2012 A1l Yes 1032747 155  7.3E+06 B2
ARL Miscanthus 2012 A1l Yes 1032750 1.10 5.1E+06 B2
ARL Hybrid poplar 2012 A1l Yes 1032753 1.18  5.3E+06 B2
ARL Switchgrass 2012 Al Yes 1032756 153  6.9e+06 B2
ARL  Switchgrass 2012 A1l No 1032759 0.63  2.9E+06 B2
ARL Miscanthus 2012 A2 Yes 1032762 1.36  6.2E+06 B2
ARL  Switchgrass 2012 A2 No 1032765 147  6.8E+06 B2
ARL Native grass mix 2012 A2 Yes 1032768 1.32  6.0E+06 B2
ARL Restored prairie 2012 A2 Yes 1032771 118  5.4E+06 B2
ARL Old field 2012 A2 Yes 1032774 136  6.2E+06 B2
ARL Hybrid poplar 2012 A2 Yes 1032777 133  6.0E+06 B2
ARL Miscanthus 2012 A3 Yes 1032780 1.26  5.7E+06 B2
ARL Restored prairie 2012 A3 Yes 1032783 136  6.2E+06 B2
ARL Native grass mix 2012 A3 Yes 1032786 1.02 4, 7E+06 B2
ARL Hybrid poplar 2012 A3 Yes 1032789 159  7.2E+06 B2
ARL Old field 2012 A3 Yes 1032792 1.34  6.1E+06 B2
ARL Hybrid poplar 2012 A4 Yes 1032795 1.16  5.3E+06 B2
ARL Old field 2012 A4 Yes 1032798 097  4.5E+06 B2
ARL Native grassmix 2012 A4 Yes 1032801 116  5.4E+06 B2
ARL Restored prairie 2012 A4 Yes 1032804 158  7.3E+06 B2
ARL Miscanthus 2012 A4 Yes 1032807 122  5.5E+06 B2
ARL  Switchgrass 2012 A4 Yes 1032810 1.25 5.6E+06 B2
ARL  Switchgrass 2012 A4 No 1032813 1.32  6.0E+06 B2
ARL Hybrid poplar 2012 A5 Yes 1032816 1.45  6.5E+06 B2
ARL Restored prairie 2012 A5 Yes 1032819 1.30 6.0E+06 B2
ARL Native grass mix 2012 A5 Yes 1032822 1.17 5.3E+06 B2
ARL  Switchgrass 2012 A5 Yes 1032825 2.04  9.4E+06 B2
ARL  Switchgrass 2012 A5 No 1032828 1.89  8.7E+06 B2
ARL Old field 2012 A5 Yes 1032831 1.94  8.8E+06 B2
ARL Miscanthus 2012 A5 Yes 1032834 1.76  8.1E+06 B2
KBS Continuous corn 2012 K2 Yes 1032837 2.08  9.5E+06 B2
KBS Continuous corn 2012 K4 Yes 1032840 2.00  9.2E+06 B2
KBS Switchgrass 2012 K2 Yes 1032843 1.66 7.7E+06 B2
KBS Switchgrass 2012 K3 Yes 1032846 1.69  7.8E+06 B2
KBS Switchgrass 2012 K4 Yes 1032849 1.20  5.6E+06 B2
KBS Miscanthus 2012 K3 Yes 1032852 1.40  6.4E+06 B2
KBS Native grass mix 2012 K2 Yes 1032855 1.13 5.2E+06 B2
KBS Native grass mix 2012 K3 Yes 1032858 1.08  4.9+06 B2

KBS Native grass mix 2012 K4 Yes 1032861 1.06 4.9E+06 B2
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Site  Crop Year Block Fertilized Project ID (Gbp) Sequences Batch
KBS Native grass mix 2012 K5 Yes 1032864 1.08  5.0E+06 B2
KBS Hybrid poplar 2012 K2 Yes 1032867 0.88  4.3E+06 B2
KBS Hybrid poplar 2012 K3 Yes 1032870 0.94  4.5E+06 B2
KBS Hybrid poplar 2012 K4 Yes 1032873 092  4.4E+06 B2
KBS Hybrid poplar 2012 K5 Yes 1032876 0.78  3.7E+06 B2
KBS Old field 2012 K1 Yes 1032879 0.89  4.3E+06 B2
KBS Old field 2012 K2 Yes 1032882 0.65 3.1E+06 B2
KBS Old field 2012 K3 Yes 1032885 0.84  4.0E+06 B2
KBS Old field 2012 K4 Yes 1032888 0.86  4.1E+06 B2
KBS Restored prairie 2012 K1 No 1032891 0.73  3.5E+06 B2
KBS Restored prairie 2012 K5 No 1032894 0.80 3.8E+06 B2
KBS Continuouscorn 2012 K1 Yes 1040325 1.60  7.3E+06 B3
KBS Switchgrass 2012 K1 Yes 1040328 158  7.3E+06 B3
KBS Miscanthus 2012 K1 Yes 1040331 1.63  7.4E+06 B3
KBS Native grass mix 2012 K1l Yes 1040334 1.47 6.6E+06 B3
KBS Hybrid poplar 2012 K1 Yes 1040337 147  6.7E+06 B3
KBS Continuouscorn 2012 K1 Yes 1040340 1.38 6.2E+06 B3
KBS Miscanthus 2012 K2 Yes 1040343 1.38  6.3E+06 B3
KBS Restored prairie 2012 K2 No 1040346 166  7.5E+06 B3
KBS Continuouscorn 2012 K3 Yes 1040349 146  6.6E+06 B3
KBS Miscanthus 2012 K4 Yes 1040352 156  7.1E+06 B3
KBS Restored prairie 2012 K4 No 1040355 206  9.3E+06 B3
KBS Continuous corn 2012 K5 Yes 1040358 1.47 6.6E+06 B3
KBS Switchgrass 2012 K5 Yes 1040361 219  9.9E+06 B3
KBS Miscanthus 2012 K5 Yes 1040364 1.47  6.7TE+06 B3
KBS Old field 2012 K5 Yes 1040367 156  7.1E+06 B3
ARL Native grass mix 2010 A5 Yes 1040370 1.14 5.1E+06 B3
ARL  Switchgrass 2011 A2 Yes 1040373 158  7.1E+06 B3
ARL Miscanthus 2011 A2 Yes 1040376 140  6.3E+06 B3
ARL Switchgrass 2011 A3 Yes 1040379 169 7.7E+06 B3
ARL  Switchgrass 2011 A3 No 1040382 221  1.0E+07 B3
ARL  Switchgrass 2011 A4 No 1040385 1.86  8.5E+06 B3
ARL Restored prairie 2011 A4 Yes 1040388 159  7.3E+06 B3
ARL Switchgrass 2011 A5 Yes 1040391 174  7.9E+06 B3
ARL Miscanthus 2011 A5 Yes 1040394 136  6.2E+06 B3
ARL Hybrid poplar 2011 A5 Yes 1040397 150 6.8E+06 B3
ARL Old field 2011 A5 Yes 1040400 137  6.2E+06 B3
ARL Switchgrass 2012 A1l Yes 1040403 206  9.3E+06 B3
ARL Old field 2012 Al Yes 1040406 191  8.5E+06 B3
ARL  Switchgrass 2012 A2 Yes 1040409 166  7.6E+06 B3
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JGI Size
Site  Crop Year Block Fertilized ProjectID (Gbp) Sequences Batch
ARL Switchgrass 2012 A2 No 1040412 171  7.7E+06 B3
ARL Miscanthus 2012 A2 Yes 1040415 1.61 7.4E+06 B3
ARL  Switchgrass 2012 A3 Yes 1040418 136  6.2E+06 B3
ARL  Switchgrass 2012 A3 No 1040421 2.03  9.3E+06 B3

Boldface indicates technical replicates.
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Table S3.2 Metadata for clusters of orthologous groups (COG) annotations
NOTE: This table contains 4873 records and would cover over 140 printed pages. Only the first 24 records are shown here

Function COG model Single-
COG category COG name length (bp) copy Outdated
COoGooo1 H Glutamate-1-semialdehyde aminotransferase 1296 FALSE FALSE
COG0002 E N-acetyl-gamma-glutamylphosphate reductase 1047 FALSE FALSE
COGO0003 P Anion-transporting ATPase, ArsA/GET3 family 966 FALSE FALSE
COoGooo4 P Ammonia channel protein AmtB 1227 FALSE FALSE
COGO0005 F Purine nucleoside phosphorylase 786 FALSE FALSE
COGO0006 E Xaa-Pro aminopeptidase 1152 FALSE FALSE
COGo000o7 H Uroporphyrinogen-111 methylase (siroheme synthase) 732 FALSE FALSE
COG0008 J Glutamyl- or glutaminyl-tRNA synthetase 1416 FALSE FALSE
COG0009 J tRNA A37 threonylcarbamoyladenosine synthetase subunit TsaC/SUAS/YrdC 633 FALSE FALSE
COG0010 E Arginase family enzyme 915 FALSE FALSE
COGO0011 S Uncharacterized conserved protein YqgV, UPF0045/DUF77 family 300 FALSE FALSE
COGo0012 J Ribosome-binding ATPase YchF, GTP1/OBG family 1116 FALSE FALSE
COG0013 J Alanyl-tRNA synthetase 2637 FALSE FALSE
COG0014 E Gamma-glutamyl phosphate reductase 1251 FALSE FALSE
COGO0015 F Adenylosuccinate lyase 1314 FALSE FALSE
COG0016 J Phenylalanyl-tRNA synthetase alpha subunit 1005 TRUE FALSE
COGo0017 J Aspartyl/asparaginyl-tRNA synthetase 1305 FALSE FALSE
COG0018 J Arginyl-tRNA synthetase 1731 FALSE FALSE
COG0019 E Diaminopimelate decarboxylase 1182 FALSE FALSE
COG0020 | Undecaprenyl pyrophosphate synthase 735 FALSE FALSE
COG0021 G Transketolase 1989 FALSE FALSE
COG0022 C Pyruvate/2-oxoglutarate/acetoin dehydrogenase complex, dehydrogenase (E1) 972 FALSE FALSE
component
COG0023 J Translation initiation factor 1 (elF-1/SUI1) 312 FALSE FALSE
COG0024 ] Methionine aminopeptidase 765 FALSE FALSE

COG:s fitting into multiple function categories are counted in all of them. Single-copy denotes the 37 universal single-copy genes used for
normalization across samples. Outdated indicates COGs removed in the 2014 update of the database; these were not included in the study.
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Table S3.3 Denitrification pathway COGs

Function
Process COG COG name category  Gene symbol Ref
Nitrate C0G2180 Nitrate reductase assembly protein NarJ, required for insertion of ~ CPO narJ/narw 1
reduction molybdenum cofactor
C0G2181 Nitrate reductase gamma subunit CP narl/narV 1
C0OG2132 Multicopper oxidase with three cupredoxin domains (includes cell DPM 1
division protein FtsP and spore coat protein CotA)
COG5013 Nitrate reductase alpha subunit CP narG/narZ/nxrA 1,2
COG1140 Nitrate reductase beta subunit CP narH/marY/nxrB 1,2
COG3043 Nitrate reductase cytochrome c-type subunit CP napB 1
COG3005 Tetraheme cytochrome c¢ subunit of nitrate or TMAO reductase C 1,2
C0G2223 Nitrate/nitrite transporter NarK P narK 2
Nitrite COG1251 NAD(P)H-nitrite reductase, large subunit C 1
reduction COG3303 Formate-dependent nitrite reductase, periplasmic cytochrome ¢552 P 1
subunit
C0OG2146 Ferredoxin subunit of nitrite reductase or a ring-hydroxylating PQ 1
dioxygenase
COG3301 Formate-dependent nitrite reductase, membrane component NrfD P 1
Nitric oxide = COG3256 Nitric oxide reductase large subunit P norB 1
reduction COG4548 Nitric oxide reductase activation protein P 1
Nitrous oxide COG4263 Nitrous oxide reductase P nosZ 1,2
reduction C0OG3420 Nitrous oxidase accessory protein NosD, contains tandem CASH P nosD 2
domains

Data from the 2014 update to the COG database. Function categories: C, Energy production and conversion; D, cell cycle control, cell division,
chromosome partitioning; M, Cell wall/membrange/envelope biogenesis; O, Posttranslational modification, protein turnover, chaperones; P,
Inorganic ion transport and metabolism; Q, Secondary metabolite biosynthesis, transport and catabolism. Gene symbols obtained from the KEGG
database. References: 1) S. He et al., MBio. 6, e00066—15 (2015); 2) Z. Wang et al., PLoS One. 9, e113603 (2014).




0.050
Stress; 0.142
0.0251
N
) 0.000-
()]
=
pra
-0.025-
®
-0.050-
-0.06 -0.04 -0.02 0.00 0.02 0.04

NMDS1

Site
@ ARL

AKBs

Year

@® 2010
@ 2011
@ 2012
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Figure 3.2 Cropping system effects on soil microbial community functional gene profiles. Ordinations
conducted separately by site-year. Intersample distances are corrected for effects of metagenome size and

sequencing batch.
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Figure S3.3 Cropping system effects on abundances of genes involved in cell signaling (COG function

category V).
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Abstract

Nitrous oxide (N:O) is a potent greenhouse gas and major component of the net global warming potential
of bioenergy feedstock production systems. Numerous environmental factors influence soil N,O
production, with effects that may vary among cropping systems. We investigated how soil temperature,
water filled pore space (WFPS), and concentrations of soil nitrate and ammonium constrained N>O
production from a range of cropping systems including conventionally-managed annual grain crops,
perennial warm-season grasses, hybrid poplar, and polycultures of tallgrass prairie species over six
growing seasons at two field sites. We observed higher N,O fluxes and concentrations of soil nitrate in
the annual cropping systems, and in most fertilized perennial systems relative to their nonfertilized
counterparts. Measurements of ammonium concentrations, soil temperature, and WFPS within a site had
similar distributions across cropping systems. We used quantile regression to evaluate whether levels of
the four environmental factors limited the highest fluxes observed. At both sites, all environmental factors
were significantly and positively related to the 95th percentile of N,O fluxes. Both our models and
observations found high fluxes could occur at low soil moistures, sub-zero soil temperatures, and minimal
nitrogen concentrations. Differences in cropping-system specific quantile regression coefficients did not
systematically reflect broad management or other cropping system differences. Overall, environmental
conditions appeared to define bounds for N>O fluxes, but these bounds do not appear to drive cropping

system-level differences.
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4.1 Introduction

Nitrous oxide (N-O) is one of the major contributors to global radiative forcing (Forster et al., 2007;
Robertson et al., 2000) and is currently the single most important ozone-depleting substance
(Ravishankara et al., 2009). In the United States, approximately 75% of N>O emissions come from
fertility management of agricultural soils (U.S. Environmental Protection Agency, 2014). N>O emissions
can counterbalance net carbon balance benefits of fossil fuel displacement for many agricultural systems
(Crutzen et al., 2008), making the management and mitigation of N-O production a major aspect of long-
term cropping system sustainability. This consideration is particularly important for the development of
bioenergy feedstock production systems from perennial crops and on marginal lands.

By broadening the range of economically viable cropping systems, bioenergy feedstock
production offers many ecological advantages (Robertson et al., 2008). Bioenergy feedstock cropping
systems can increase diversity in agricultural regions, improving landscape-level provision of ecosystem
services (Werling et al., 2014). Some of these systems may function on agronomically and ecologically
marginal lands (Gelfand et al., 2013), which could lead to long-term improvement in their soil carbon
content and erosion potential (Blanco-Canqui, 2010). While agroecosystems incorporating perenniality
and plant species diversity may exhibit more efficient nutrient cycling (Hooper et al., 2005; Hooper and
Vitousek, 1998), nitrogen fertilization will likely factor into management of bioenergy feedstock cropping
systems (Montross et al., 2013). We have limited knowledge of how perennial and polyculture bioenergy
feedstock cropping systems might function under agronomic management (Stehfest and Bouwman, 2006;
Trybula et al., 2015), leading to considerable uncertainty about how biotic and abiotic factors in these
systems will interact to influence N2O production dynamics.

Factors influencing N.O production in soil have received considerable study over the years. We
know that most soil N>O production results from the microbial processes of nitrification (oxidation of
ammonia [NHs] to nitrate [NO37) and denitrification (reduction of NOs to N2), both of which can produce
N>O as a side-product (Bremner, 1997; Butterbach-Bahl et al., 2013). Of the two processes,

denitrification frequently accounts for the majority of N>O production, particularly in soils that are moist,
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finely-textured, or otherwise oxygen-limited (Mathieu et al., 2006). Despite the microbial nature of these
processes, under most conditions abiotic environmental factors typically determine N.O fluxes
(Wallenstein et al., 2006). These factors include concentrations of substrates (NHs, NOs', and labile
carbon), soil oxygen availability (typically driven by soil water-filled pore space [WFPS]), soil
temperature, and pH (Wallenstein et al., 2006). With multiple factors influencing N2O fluxes, standard
regression techniques rarely generate clear, consistent relationships between specific factors and flux.
Alternative methods, such as quantile regression (Cade and Noon, 2003), may serve to determine the
extent to which a particular variable imposes an upper bound on observed N,O fluxes. Further
complicating matters, the effects of these factors may also vary by cropping systems and soils (Dechow
and Freibauer, 2011; Lehuger et al., 2009). For instance, soil texture influences the relationship between
soil moisture and nitrification rates (Garrido et al., 2002). Similarly, the effect of nitrogen fertilizer
application on N,O emissions differs among cropping systems, although this may reflect immobilization
of exogenous nitrogen, in addition to responses to substrate concentrations (Duran et al., 2016; Stehfest
and Bouwman, 2006). Efforts to model N>O fluxes from novel cropping systems such as perennial,
polycultural bioenergy feedstocks, should consider cropping system-specific responses to environmental
drivers of N,O production.

Our prior study of N-O dynamics in this system identified substantial variation in N,O fluxes
among cropping systems and suggested that environmental factors might influence N,O fluxes in a
system-specific manner (Oates et al., 2016). In the present study, we employed a longer data record to
examine these relationships in greater detail. Rather than treating environmental factors as direct
predictors of N,O fluxes, as we did in our earlier work and as other studies have done (Castellano et al.,
2010; Dechow and Freibauer, 2011; Liu et al., 2013), we interpreted these factors as constraints on
maximum N»O production. This approach is highly appropriate for systems where multiple factors jointly
contribute to variability in the property of interest (Cade and Noon, 2003). Through this work, we tested

two hypotheses: 1) soil moisture, soil temperature, and concentrations of inorganic nitrogen (NH.*, NOz)
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independently delineate upper bounds of NO production and 2) the values of those upper bounds differ
among cropping systems.

4.2 Methods

4.2.1 Experimental design and study sites

We conducted this study on the DOE-Great Lakes Bioenergy Research Center’s Bioenergy Cropping
Systems Experiment (BCSE), an agronomic trial situated at the Michigan State University W. K. Kellogg
Biological Station (KBS, 42 23'47" N, 85 22'26"W, 288 m.a.s.l) and the University of Wisconsin-
Madison Arlington Agricultural Research Station (ARL, 43 17'45" N, 89 22'48" W, 315 m.a.s.l. The
BCSE consisted of ten treatments. From 2009 to 2011, three treatments consisted of the phases of a no-
tillage corn (Zea mays L.)-soybean (Glycine max L.)-canola (Brassica napus L.) rotation; from 2012 to
2014, these treatments consisted of no-tillage continuous corn and the two phases of a corn-soybean
rotation, all of which were grown with a rye (Secale cereale L.) and Austrian winter pea (Pisumsativum
L.) cover crop (Table S4.1). The remaining treatments were in place throughout the measurement period
and consisted of continuous no-illage corn, monocultures of switchgrass (Panicum virgatum L.),
miscanthus (Miscanthus x giganteus), and hybrid poplar (Populus nigra x Populus maximowiczii), a 5-
species native grass mix, an old field recruited from the pre-existing seedbank, and an 18-species restored
tallgrass prairie. Species and variety information are presented in Table S1 of Oates et al. (2016).

All treatments were planted in 27 x 43-m plots in a five-replicate randomized complete block
design and managed with field-scale equipment. Annual grain systems were managed following
recommendations from the university extension programs from their respective states. The poplar system
was fertilized in 2010 (210 kg N ha* as 34-0-0 granular ammonium nitrate) and harvested by coppicing
during the 2013-2014 winter. Subplots (10 x 43-m) were established in all other systems to test effects of
nitrogen fertilization. The restored prairie subplots and main plots of all other systems received annual
spring nitrogen fertilization (56 kg N ha* as 34-0-0 granular ammonium nitrate), while the main restore
prairie plot and subplots of all other systems were not fertilized. Corn systems were harvested for grain

and stover separately, with near-complete stover removal. Perennial systems were harvested following the
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first frost event in the fall, with a residual stubble height of 10 cm. Poplar systems were harvested once, in
2013, and allowed to coppice. Fertilization dates for all systems are given in Table S4.2, while full details
on agronomic management are presented in Sanford et al. (2016).

Soils at KBS were primarily Kalamazoo loam (Fine-Loamy, Mixed, Semiactive, Mesic Typic
Hapludalfs). Mean annual temperature from 1981 to 2010 was 9.9 °C and mean annual precipitation was
1027 mm (MSCO, 2013). Prior to BCSE establishment, the field was planted to alfalfa (Medicago sativa
L.). The switchgrass, native grass mix, and restored prairie treatments at KBS suffered seed loss
following flooding in 2008 and were reseeded in 2009. Soils at ARL were predominantly Plano silt-loam
(Fine-Silty, Mixed, Superactive, Mesic Typic Arguidolls). Mean annual temperature from 1981 to 2010
was 6.8 °C and mean annual precipitation was 869 mm (NWS, 2013). Pre-BCSE land use differed among
blocks: the corn phase of a corn-soybean rotation (Blocks A1-A3) or an alfalfa-orchardgrass (Dactylis
glomerata L.) hay mixture (Blocks A4-A5). Following severe stand loss during the 2008-2009 winter,
miscanthus was replanted at ARL in 2010
4.2.2 Data generation
All field sampling procedures are described in detail in Oates et al. (2016). Systems were sampled
biweekly during the growing season, with additional sampling following fertilization and precipitation
events, and at reduced frequency during winter, particularly earlier in the study. Static chambers were
used to estimate trace gas emissions. Chambers were cylindrical (28.5 cm diameter, ~17 cm headspace,
~10 L volume) and inserted to a depth of ~5 cm. Chamber lids were fitted with a septum for gas
extraction and a 2-mm diameter vent tube for pressure equilibration. Headspace gas samples (30 mL)
were collected immediately upon chamber closure and at 3x20 min intervals. Samples were placed in
glass 5.9-mL Exetainer vials (Labco Limited, Buckinghamshire, UK), using 20 mL to flush the vial
before over-pressurizing with the remaining 10 mL. Following gas chromatography, CO, concentration
was detected using an infrared gas analyzer (IRGA, LiCor 820, Lincoln, NE, USA) and N.O
concentration was detected using an electron capture detector (micro-ECD, Agilent 7890A GC System,

Santa Clara, CA, USA).
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Prior to estimation of N.O fluxes, CO, accumulation curves were visually inspected for outliers
indicating compromised vial integrity or other mechanical errors. In samples with four vials, nonlinearity
of fluxes was evaluated using the “HMR” package (v0.3.1, Pedersen, 2015) in the R statistical
environment (v3.2.5, R Core Team, 2016). Following this classification, all data were again visually
inspected with an emphasis on identifying outliers in N2O concentrations, particularly those that might
drive a nonlinear fit. Nonlineaer flux estimates from the “HMR” function were used for samples that
passed this secondary inspection without any data removal and whose nonlinear estimate was outside the
95% confidence interval for the linear flux estimate. For all other samples, linear flux estimates were
used.

From 2010 onward, soil cores (3.7 cm diameter, 15 cm depth at ARL, 25 cm depth at KBS) were
collected concurrently with trace gas sampling. Inorganic soil nitrogen was extracted from a 10 g field-
moist subsample using 2 M KCI following Robertson et al. (1999). Ammonium and nitrate concentrations
were determined using a Flow Solution 3100 segmented flow injection analyzer (Ol Analytical, College
Station, TX, USA), using USEPA methods 27200110 and 27190110 respectively. Nitrate values < 0 were
assigned a value of 0.05 pg-N g soil, which corresponds to the instrument detection limit.

Soil temperature was measured at the time of trace gas sampling using a 15-cm temperature probe
(Checktemp 1C, Hanna Instruments, Smithfield, RI, US). Soil moisture was measured at KBS by
determining gravimetric water content (GWC) for the soil nitrogen samples. At ARL, moisture was
measured as volumetric water content (VWC) within 1 m of the static chamber using a time domain
reflectometer with 20-cm rods (FieldScout 300, Spectrum Technologies, Plainfield, IL, US). Bulk density
was measured for all plots in 2008 and 2013. We calculated mean bulk density values groups of similarly-
managed systems: annual grain crops, poplar, and all other systems. At ARL, blocks were placed into
three groups based on their topographic position and soil properties: Al and A3, A4 and A5, and A2; at
KBS all blocks were analyzed together. Water-filled pore space (WFPS) was calculated from bulk density

(Bd) and soil particle density (Pd, assumed to be a constant 2.65 g cm™®):
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WFPS = VWC X (1 Bd) = GWC x Bd x (1 Bd)
- pd) Pd

4.2.3 Data analysis

N-O fluxes as well as soil ammonium and nitrate values were inverse hyperbolic sine (IHS) transformed
prior to analysis. IHS transformation resembles a log transformation at large input values, but is defined at
0 and allows negative values. We used this transformation to handle negative N.O fluxes, which are
periodically observed (Molodovskaya et al., 2012), and to avoid amplifying measurement errors for
values close to the detection limit of our instruments.

All analyses were conducted in the R statistical environment. Graphics were generated using the
ggplot2 package (Wickham, 2009) using default functions to generate boxplot quantiles and LOESS fits.
Quantile regression used the “rq” function in the “quantreg” package (Koenker, 2016). We used t = 0.95,
which approximately corresponded to the 95™ percentile of the data, and estimated standard errors using
the kernel method. Significance of factors was evaluated using model comparison at the P < 0.05
significance level.

4.3 Results

Our dataset consisted of 10,572 individual N2O flux measurements from 2 sites over a 6-year period. We
recorded a median of 16 observations per plot per year (range 5 to 22). For a majority of observations, we
also had accompanying measurements of soil temperature, water filled pore space (WFPS), and
ammonium and nitrate concentrations (Table 4.1). Soil nitrogen data had the sparsest coverage, with no
data in 2009 and lower frequency of data collection starting in 2013. Despite this, we generated 4,120
observations with full environmental data.

4.3.1 Distributions of N2O fluxes and potential environmental drivers, by site and system

Annual cropping systems (described in Table S4.1) generated nearly identical distributions of N.O fluxes
and environmental variables (Fig. S4.1), and were thus grouped for analysis. Soil nitrogen concentrations

and N2O fluxes varied by site, cropping system, and fertilization (Fig. 4.1). In contrast, WFPS differed
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only among sites while variability in soil temperature among systems was smaller than the range of
interannual variability (Fig. S4.2).

Within a cropping system, N-O flux observations varied over multiple orders of magnitude (Fig.
4.1). Fluxes above 100 g N>O-N ha* day occurred in nearly all systems, but were more prevalent in
annual systems (Fig. 4.1). There were strong site x cropping system interactions. The poplar and fertilized
switchgrass systems produced lower fluxes at KBS than at ARL while fertilized old field and native grass
mix systems were virtually identical at both sites. Nitrogen fertilization effects also varied among
systems, with strong effects in the switchgrass and old field and minimal effects in the native grass mix
and restored prairie.

Different patterns were observed for soil NO3z  and NH4* concentrations. Sites, cropping systems,
and nitrogen fertilization all influenced NOj3™ (Fig. 4.1). Overall NO3™ concentrations were lower in
perennial systems than annual systems, notably in the native grass mix and restored prairie, while within a
site NH4* was relatively consistent across systems. NOs™ concentrations tended to be higher at ARL than
in comparable systems at KBS, while NH4* concentrations at KBS were slightly higher and less variable.
Data to compare fertilization effects within treatment were only available for ARL, where fertilization
greatly increased NOs™ concentrations in all systems except for the restored prairie, but impacted NH4* to
a much smaller degree.

4.3.2 Environmental constraints on N2O fluxes

We used quantile regression to correlate environmental factors to the upper bound of N,O fluxes, with
1=0.95 approximately corresponding to the 95" percentile of fluxes at a given value of each constraint.
All four environmental factors tested significantly and positively related to this upper bound (Fig. 4.2).
Intercepts from these regressions indicated relatively high fluxes even at minimal values of environmental
factors; this was particularly unexpected for soil nitrogen, which is essential for N.O production. We
observed, however, that NOs  and NH,4* are uncorrelated at lower concentrations (Fig. S4.3), indicating
that even if one form is nearly absent the other may be available as a substrate. At ARL, including both

NOs and NH4* improved the quantile regression model over one using only NOz



118

(F1.3152= 6.5, P < 0.05), although the same was not true at KBS (F1, 1225 = 2.7, P =0.10).

In most cases, fitting separate slopes and intercepts for each cropping system significantly
improved model performance (all P < 0.05). The sole exception was the NO3™ relationship at KBS, where
only separate slopes were supported. In keeping with the trends observed for the full dataset, most slopes
were significantly positive (Fig. 4.3). The most ecologically consistent cropping system effect occurred in
the response to temperature, with more positive slopes for annual systems at both sites and nonsignificant
slopes in most nonfertilized systems. Similarly, nonfertilized systems at ARL generally had
nonsignificant responses to both NOs™ and NH,*, although it should be noted that very few instances of
high nitrogen concentrations were observed for these systems (Fig. 4.1, Fig. S4.3). WFPS responses were
consistent across systems at ARL and considerably more variable at KBS. Intercepts for soil nitrogen and
temperature were generally positive and substantial (Fig. 4.4). WFPS intercepts for most ARL systems
were indistinguishable from zero, but were significantly positive for all KBS systems. The miscanthus
system at KBS exhibited very curious behavior, with a high intercept and negative slope for NOs™ and the
opposite for NH4*. Overall, system-specific quantile regressions replicated the patterns observed for site-
level data.

4.4 Discussion

4.4.1 Cropping systems differ in their nitrogen dynamics

We observed substantial cropping system-level differences in soil nitrogen dynamics, notably in the
distributions of N,O fluxes and concentrations of inorganic soil nitrogen. These dynamics were not
completely correlated to differences in nitrogen fertilization rates among systems, suggesting systems
differed in their capacity to immobilize or transform exogenous nitrogen additions. Species level plant
traits such as root morphology and symbiotic associations influence nitrogen uptake capabilities (Craine
et al., 2002; De Vries et al., 2015), while at the system level plant species richness can reduce soil
inorganic nitrogen concentrations (Oelmann et al., 2007; Palmborg et al., 2005). All of these factors
contribute to differences among cropping systems in relationships between exogenous nitrogen inputs,

nitrogen pools, and N>O emissions (Lu et al., 2011; Stehfest and Bouwman, 2006)
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In a study of the switchgrass, native grass mix, and restored prairie at ARL in 2011 and 2012,
Duran et al. (2016) found all forms of nitrogen loss were lower in diverse plant communities. Over time,
these systems should accumulate organic nitrogen, either in soil organic matter or in belowground plant
tissues, with unclear long-term consequences for nitrogen cycling. Soil properties such as texture and
mineralogy may modify cropping systems effects (Pelster et al., 2011), potentially explaining our
observation of site-level differences in cropping system responses. This interaction between cropping
systems and soil properties will be of particular importance for predicting the performance of bioenergy
feedstocks established on marginal soils, and as such merits further consideration.
4.4.2 Environmental factors constrain N>O fluxes
Our observation of the importance of soil nitrogen, WFPS, and temperature fits with the general
understanding of N,O production in soils (Robertson and Vitousek, 2009). Nonetheless, this analysis
produced some surprising results. Of these, the high intercepts observed with quantile regression were
perhaps the most striking. Temperatures below 0 °C might be expected to severely restrict rates of
microbial activity; this is an assumption we make when aggregating N.O emissions on an annual basis.
Despite that, we observed fairly high fluxes at these temperatures as well as a relatively muted effect of
increasing temperature, particularly at ARL. N,O fluxes from frozen soils, particularly in response to
freeze-thaw events, have been reported elsewhere (Teepe et al., 2000), suggesting it may be inappropriate
to discount wintertime microbial activity. Temperature sensitivity may differ for enzymes responsible for
N,O production and consumption, potentially increasing N-O production at soil temperatures near
freezing (Muller et al., 2003). The strength of the quantile regression was particularly evident in the
relationship between WFPS and N,O fluxes at ARL. From the raw data, this appeared to be a log-linear
relationship over the entire range of observed WFPS; this contrasts with frequent interpretations of this
relationship, which posit that WFPS must exceed some threshold for denitrification as well as a peak in
N2O production near field capacity, rather than near saturation (Hénault et al., 2005; Laville et al., 2011).
Our findings suggest WFPS constrains N.O fluxes even at moisture contents associated with aerobic

conditions. The high difference in intercepts between ARL and KBS likely results from differences in
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matric potential, the mechanism Castellano et al. (2010) used to explain their observation of greater N.O
fluxes at lower WFPS in more porous soils.

One of our more perplexing observations was the occurrence of relatively high N2O fluxes at
minimal NOs" levels. It has been suggested that NO2, rather than NOs', is the most important species for
N-O production (Maharjan and Venterea, 2013). While our measurement of "NOs™ concentrations
reflects the sum of NO3; and NOy, the latter is generally neglected due to its brief residence time in the
soil (Butterbach-Bahl et al., 2013). NO_™ can be produced by both nitrification and denitrification
(Butterbach-Bahl et al., 2013), with processes like nitrifier denitrification contributing significantly to
N2O production under conditions that are not conducive to denitrification (Kool et al., 2011). We
observed a significant effect of NH," concentration on N2O flux upper limits as well as a marginal
improvement of quantile regression models that included both NH." and NOs over those containing only
one or the other, all of which suggests nitrification may contribute to N,O fluxes in these systems. The
strong and consistent effect of WFPS we observed appears to contradict this, as nitrification rates are
thought to peak at intermediate soil moisture levels (Lehuger et al., 2009), although our findings in
Chapter 5 suggest this may not be so clear-cut. The one thing that emerges with clarity from this is the
importance of further understanding the importance of nitrification and NH4* concentrations on N2O
production under conditions that are not conducive to denitrification.

4.4.3 Environmental constraints on N2O fluxes differ by cropping system

Cropping systems differed in their N2O flux responses to environmental constraints. These differences,
however, did not align with our prior classification of ecological differences among systems. Contrast this
to the patterns observed in N2O fluxes and NOs™ concentrations, whose distributions reflected differences
in perenniality, plant species diversity, and fertilization management. The response to soil temperature
gave the most ecologically-interpretable pattern: annual systems exhibited the strongest response while
nonfertilized systems exhibited the weakest response. This matched the patterns of NOs™ concentration,
and reflected the higher levels of nitrogen addition for the annual systems. Thus, greater nitrogen inputs

led to higher soil NOs™ concentrations, which appear to have allowed N.O fluxes to respond more strongly
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to increases in temperature. We anticipated this mechanism would also apply to moisture and nitrogen
availability, but this did not prove to be the case. The different responses to moisture may have reflected
enzymatic variability, as oxygen sensitivities for key denitrification enzymes may differ among systems
(Cavigelli and Robertson, 2001). Similarly, the relationship between soil nitrogen concentrations and N.O
production varies among systems (Lehuger et al., 2009), as does the proportion of nitrogen inputs that are
emitted as N2O (Duran et al., 2016), leading us to expect different responses to nitrogen concentrations.
The limited range of soil nitrogen concentrations we observed for many of our systems, notably
nonfertilized ones, may have hampered our detection of system-specific responses. Prior research
indicates that denitrification responds less strongly to nitrogen fertilization in nonagricultural systems
than in agricultural ones (Lu et al., 2011), suggesting we might have observed greater differentiation
among systems at higher soil nitrogen concentrations. These challenges illustrate a major limitation of
observational studies, where fully sampling the parameter space may prove extremely difficult. Moreover,
the uncertainty in many of our parameter estimates speaks to the exceptionally large volume of data
required for this type of approach.

Multiple mechanisms could drive differences among cropping systems in their response to
environmental factors. Soil pH exerts important, if frequently overlooked, influence on nitrification and
denitrification (Cuhel et al., 2010; Oehler et al., 2010). Carbon available for microbial respiration fuels
denitrification (Henry et al., 2008; Senbayram et al., 2012); perennial plants allocate far more carbon
belowground and often engage in symbiotic relationships with soil microbiota, greatly increasing soil
carbon availability (Warembourg and Estelrich, 2001). Nutrient limitation is thought to increase this
dynamic (Bell et al., 2015). At the same time, microbial communities differ in their size, activity, and
biochemistry. In particular, they may differ in the proportion of their denitrification that results in N2O
rather than N, (Domeignoz-Horta et al., 2015). While the extent and source of these differences in
microbial community properties remain unclear, this may be a mechanism by which cropping systems

develop different responses to environmental constraints of N2O fluxes.
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4.5 Conclusions
Our study aimed to investigate differences among bioenergy feedstock cropping systems in their
production of N-O and in their response to potential environmental constraints of this process. Cropping
systems differed in their distribution of N2O fluxes and soil nitrate concentrations, with fertilization and
annual crops generally increasing levels. Across all systems, soil temperature, WFPS, and concentrations
of nitrate and ammonium all correlated to maximum N2O flux observations, suggesting these factors
constrained N.O production. High fluxes occurred even at low substrate concentrations, temperature, and
moisture. Responses to these constraints varied among cropping systems, implying N2O fluxes may differ
among systems under a given set of conditions. Interpretation of our findings needs to be tempered by the
limited range of variables measured for some systems, particularly nitrogen concentrations in
nonfertilized systems. Nonetheless, this study illustrates environmental constraints over N,O fluxes and
suggests responses to these constraints differ among bioenergy feedstock cropping systems.
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Table 4.1 Number of N,O flux and environmental parameter measurements collected, by site and year

Soil Soil Water-filled

Year Site  N;O flux nitrogen temperature pore space
2009 ARL 692 — 684 663
KBS 495 — 483 447

2010 ARL 887 640 834 864
KBS 499 301 316 351

2011 ARL 925 820 922 875
KBS 634 456 486 483

2012 ARL 1388 1254 1388 1320
KBS 594 431 460 456

2013 ARL 1387 311 1386 1383
KBS 733 40 534 565

2014 ARL 1334 130 1229 1194
KBS 1004 0 659 581

Soil nitrogen measurement methods are incompatible between 2009
and subsequent years. The number of treatments sampled expanded in
2011 at KBS and 2012 at ARL. Frequency of nitrogen data collection
was reduced beginning in 2013. Soil nitrogen data were collected in
2014 at KBS but are not yet available.




Table S4.1 Crops and rotational phases for annual cropping systems, by year

Year System  Rotation Crop
2009 G01 Continuous corn Corn
G02 Corn-canola-soybean  Soybean
GO03 Corn-canola-soybean  Canola
G04 Corn-canola-soybean  Corn
2010 G01 Continuous corn Corn
G02 Corn-canola-soybean  Canola
GO03 Corn-canola-soybean  Corn
G04 Corn-canola-soybean  Soybean
2011 GO01 Continuous corn Corn
G02 Corn-canola-soybean  Corn
GO03 Corn-canola-soybean  Soybean
G04 Corn-canola-soybean  Canola
2012 GO01 Continuous corn Corn
G02 Continuous corn Corn (cover crop)
GO03 Corn-soybean Corn (cover crop)
G04 Corn-soybean Soybean (cover crop)
2013 G01 Continuous corn Corn
G02 Continuous corn Corn (cover crop)
GO03 Corn-soybean Soybean (cover crop)
G04 Corn-soybean Corn (cover crop)
2014 GO01 Continuous corn Corn
G02 Continuous corn Corn (cover crop)
GO03 Corn-soybean Corn (cover crop)
G04 Corn-soybean Soybean (cover crop)

Cover consisted of rye and Austrian winter pea.
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Table S4.2 Dates of annual nitrogen applications, by treatment

Year
Site  Treatment 2009 2010 2011 2012 2013 2014
ARL GO01 11-Jun 7-Jun  28-Jun 7-Jun  28-Jun  16-Jun
G02 27-May  28-Jun 7-Jun  28-Jun  16-Jun
GO03 18-May 7-Jun 7-Jun 16-Jun
G04 11-Jun 27-May 28-Jun
GO05 27-May 27-May 11-May 30-May 5-Jun
G06 Replanted 27-May 11-May 30-May 5-Jun
GO07 27-May 27-May 11-May 30-May 5-Jun
GO08 21-Apr
G09 18-May 27-May 27-May 11-May 30-May 5-Jun
G10 27-May  27-May 11-May 30-May 5-Jun
KBS GO01 22-Jun 15-Jun  13-Jun  11-Jun  12-Jun  18-Jun
G02 10-May  13-Jun  11-Jun  28-Jun  27-Jun
GO03 15-Jun 15-Jun 11-Jun 27-Jun
G04 22-Jun 20-May 28-Jun
G05 Replanted 10-May 18-May 4-May 16-May 23-May
GO06 22-Jun 10-May 18-May 4-May 16-May 23-May
GO7 Replanted 10-May 18-May 4-May 16-May 23-May
G08 1-Jun
G09 15-Jun 10-May 18-May 4-May 16-May 23-May
G10 Replanted 10-May 18-May 4-May 16-May 23-May

Bolded values indicate corn phases From2009-2011, G02-G04 were in a corn-soybean-
canola rotation. From 2012-2014, G02 was continuous corn with a cover crop, while G03-
G04 were a corn-soybean rotation with a cover crop. Soybean phases received no nitrogen

fertilizer.
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Figure 4.1 Effects of cropping system, site, and fertilization on distributions of N.O fluxes and
concentrations of inorganic soil nitrogen. Values are plotted using an inverse hyperbolic sine (IHS)
transformation. Boxplots give 25", 50", and 75" percentiles.
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Figure S4.3. Relationship between soil NHs" and NOs™ concentrations. Lines are loess curves of second-

order polynomials with a span of 0.75, plotted by cropping system.
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CHAPTER 5
Aggregate annual nitrous oxide emissions correlate to soil microbial functional gene abundance
profiles at the plot level and may reflect inherent nitrous oxide production capacities in bioenergy
feedstock cropping systems
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Abstract

Soil microbial communities likely determine the inherent N>O production capacity of a system, but
microbial roles may be more difficult to observe if environmental factors constrain N2O fluxes below this
inherent capacity. We explored four possible estimators of inherent production capacity: aggregate annual
emissions, peak flux events, and potential N.O production via nitrification (PNR) and denitrification
(PDR), as estimated through recalibration of a N2O production model. Aggregate emissions differed
among cropping systems and sites, with nitrogen fertilization generally, but not always, increasing
emissions. Within cropping systems, we observed considerable interannual variability and occasionally
high intraannual variability. Contrary to our expectations, the timing of peak flux events was not
synchronized by fertilization schedules. Likewise, environmental conditions during peak flux events were
not more favorable to N2O production than conditions at other times during the year. N>O production
model recalibration was largely unsuccessful, generating uninformative posterior estimates of PNR and
PDR for most samples in our dataset. Aggregate emissions and peak fluxes were highly correlated at both
sites, suggesting both measures reflect inherent N2O production capacity. In contrast, PNR and PDR were
uncorrelated to either. We used elastic net modeling to correlate these four estimators to microbial
functional gene profiles. This approach explained a high proportion of variability in aggregate emissions
but was nonsignificant for peak fluxes, PNR, and PDR. Functional genes retained by the model of
aggregate emissions clustered in a small number of functional categories, and few were directly involved
in nitrification or denitrification. These correlations indicate functional gene abundances may reflect

factors that drive within-system variability in N-O emissions.
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5.1 Introduction

The driving goal of this research project has been to link bioenergy feedstock cropping systems, soil
microbial communities, and variability in N,O production. In Chapter 3, we explored how microbial
functional gene profiles differed among the systems of the Bioenergy Cropping Systems Experiment
(BCSE). While we found cropping system effects, they were inconsistent and maintained considerable
variability among the replicate plots of a system. What effects there were weakly influenced the overall
abundance profile, rather than exerting stronger influences on a subset of genetic functions. In Chapter 4,
we explored how environmental conditions, such as inorganic nitrogen concentrations, soil moisture, and
temperature, influenced N.O fluxes. We found these factors defined upper limits for N2O fluxes, with
some variation among cropping systems in the nature of this limit. While our analysis in both chapters
emphasized cropping system effects, we consistently found considerable plot-level variation in both
microbial community composition and N»O flux dynamics. In this chapter, we focus more on plot-level
dynamics, and in particular on the connection between plot-level variability in soil microbial communities
and N0 production.

Soil microbes are both essential to N,O production and potentially unnecessary for capturing its
variability. Virtually all soil N,O results from microbially-mediated processes, predominantly nitrification
and denitrification (Butterbach-Bahl et al., 2013). N2O production can be dramatically reduced by
inhibiting these processes directly (Severin et al., 2016) or by inhibiting microbial growth in general
(Mothapo et al., 2013). Despite this, N.O production can be modeled with reasonable success without
incorporating microbial data (Giltrap et al., 2010; Oehler et al., 2010), and incorporating microbial
information may not improve empirical models (Graham et al., 2014). Part of this disconnect may reflect
the rarity with which microbial activity limits actual N>,O production rates. Both nitrification and
denitrification respond strongly to substrate availability, moisture, and pH (Booth et al., 2005; Cuhel et
al., 2010). Variation in these environmental factors can be sufficient to explain variation in N.O
production, rendering microbial community characteristics redundant (Attard et al., 2011). At the same

time, denitrification gene transcriptional activity can be linked to N,O production rates (Harter et al.,
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2014). Microbial effects are often more visible in properties such as potential denitrification (Morales et
al., 2010), N.O consumption capacity (Jones et al., 2014), or the proportion of N.O in denitrification
products (Domeignoz-Horta et al., 2015). These properties may be more indicative of the inherent N,O
production capacity of a system than of its production at a specific point in time, possibly allowing
detection of microbial influences past the obscuring effects of more proximal environmental drivers
(Wallenstein et al., 2006).

Inherent, microbially-influenced, capabilities may be a particularly useful property in the context
of process-based N2O production models. Generalized models capable of reflecting N,O production
dynamics across a broad range of environments are highly desirable (Blagodatsky and Smith, 2012), but
at present models generally need to be calibrated to a specific cropping system, or even a specific region
(Chen et al., 2008). This might be reduced through improved understanding and depiction of factors such
as microbial activity that underlie system-specificity of behaviors. Many of extant N,O models lack an
explicit framework for incorporating differences in microbial physiology (compare to Wieder et al.,
2014), but include properties such as potential denitrification and N2:N>O production ratios (Butterbach-
Bahl et al., 2013) which could provide a platform for incorporating microbial community information.
For this work, we focused on the nitrous oxide emissions module (NOE) of the CERES model (Hénault et
al., 2005). NOE lacks the complexity of more recent models, but only requires information on soil
temperature, water-filled pore space (WFPS), and concentrations of ammonium (NH4*) and nitrate (NO3
), overlapping perfectly with the environmental parameters we measured alongside N2O fluxes (Chapter
4). Moreover, the authors of the model have published a study where they recalibrated key model
parameters to fit differences among field sites (Lehuger et al., 2009). NOE employs terms that reflect
potential N>O production from denitrification and from nitrification, providing a framework by which we
could estimate these properties and then relate them to functional gene abundance profiles.

The experiment in this chapter consisted of two steps. First, we attempted to estimate inherent
single-year N,O production capabilities at the plot-year level. These estimates reflected the combination

of potential nitrification/denitrification rates and N,O production ratios, both of which have previously
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been linked to microbial functional gene abundances (Domeignoz-Horta et al., 2015; Morales et al.,
2010). We also calculated plot-level aggregate annual N-O emissions, having found in Chapter 2 that
these correlated to functional gene profiles, at least in the corn (Zea mays L.) system. Finally, we
identified peak N2O flux events, which the constraint-based relationships we identified in Chapter 4
suggested would indicate the best conditions for N2O production during the year. N2O production during
high-flux events has previously been linked to denitrification gene expression (Németh et al., 2014),
suggesting this may be another metric that reflects microbial community influence. After generating and
analyzing these four estimators, we attempted to link them to functional gene profiles via elastic net
modeling, largely replicating the approach presented in Chapter 2. Through this effort, we attempted to
determine whether soil microbial gene abundance patterns reflected within-system variability in estimates
of inherent NO production capacity.

5.2 Methods

5.2.1 Datasets

We used the N2O flux and environmental parameter dataset described in Chapter 4 and the microbial
functional gene profile dataset described in Chapter 3. Environmental data consisted of N.O flux point
measurements collected from Arlington Agricultural Research Station in Wisconsin (ARL) and W.K.
Kellogg Biological Station in Michigan (KBS) from 2009 to 2014 (see any of the preceding chapters for
descriptions of site history and agronomic management). Fluxes were estimated using static chambers, as
described in Oates et al. (2016). For many of these flux measurements, we had accompanying data on
ammonium (NH.") and nitrate (NO3™ ) concentrations, water-filled pore space (WFPS), and soil
temperature. While WFPS and temperature were measured systematically throughout the study period,
nitrogen data were collected beginning in 2010 at both sites, with a sharp decrease in sampling frequency
in 2012 at KBS and 2013 at ARL. Microbial data were collected from 2010 to 2012 at ARL and in 2012
at KBS. Field data are archived in the GLBRC Sustainability Data Catalog

(https://data.sustainability.glbrc.org/), while microbial data are available through the Integrated Microbial

Genomes database (https://img.jgi.doe.gov/m, with identifying information in Table S3.1). A site-level
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breakdown of the number of observations with environmental and microbial data is presented in Table
5.1.

5.2.2 Analysis

All analyses were conducted in the R statistical environment (v3.3.0, R Core Team, 2016). Graphics were
generated with the 'ggplot2' package (v2.1.0, Wickham, 2009), and used default settings for boxplot and
smoothing summaries.

5.2.2.1 Aggregate annual emissions

Aggregate annual emissions were calculated by linear interpolation (Oates et al., 2016):

Y, +F
+
y,t y,t+1
§ 2 (Dy,t - Dy,t+1)
t=0

In yeary, T flux events were sampled, where Fy; is the flux and Dy, is the date of sample t. Dy,
corresponds to the last day before Dy1 where soil temperature was < 0 °C, while Dy 1+1 corresponds to the
first day after Dy r where soil temperature was < 0 °C. Both Fy and Fy1+1 were assumed to be 0. If
temperatures never dropped below 0 °C between Dyrand Dy+1,1, Dyrand Dy+1,0were taken as
December 31 and January 1 of their respective years, while their fluxes were the time-weighted average
of Fyrand Fy+11.

There are limitations to this approach. There are indications that N.O fluxes may not transition
linearly over the two-week time period typically used in our study (Molodovskaya et al., 2012),
potentially leading to overestimate of aggregate fluxes. Linear interpolation is nonetheless regularly used
in the field, and we are unaware of a validated alternative method. Our measurements outside of the
growing season were limited, particularly in the earlier years of the experiment. In the absence of
measurements, we assumed there were no N2O fluxes when soil temperatures were < 0 °C, although our
findings from Chapter 4 indicate this to be otherwise. Alternative assumptions of unobserved fluxes
outside of the growing season minimally impacted aggregate emission rank orders, leading us to continue

employing the approach with the least complicated assumptions.
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5.2.2.2 Peak fluxes
Based on our findings in Chapter 4, we expected that peak fluxes would occur on days with the fewest
environmental constraints on N2O production. Moreover, we expected that plots within a cropping system
should experience similar environmental conditions on a given date. In particular, the timing of fertilizer
application is thought to be important (Laville et al., 2011) and was taken into consideration (Table 5.2).
We looked at dates on which peak fluxes occurred as dates on which all plots in a cropping
system would be expected to have high N,O fluxes. For the actual peak flux from a plot, we calculated an
average of fluxes from that plot during peak flux days for its cropping system, weighted by the number of

plots that peaked on a given date:

i FaNg
d=1 P
More than one plot in a system could experience a peak flux event on a given day, thus the number of
unique dates with peak flux events, D, would be less than or equal to the total number of plots, P. Flux Fq
was recorded for the plot on day d, on which Ng plots from that system recorded peak fluxes.
5.2.2.3 N2O emissions model calibration
This analysis was based on the NOE Bayesian model recalibration of Lehuger et al. (2009). In the NOE
model, N2O fluxes from nitrification and denitrification are calculated independently, then summed. N.O
production from each process is calculated as a product of the maximum potential rate (P, Pp), the ratio
of N0 produced by each process (Rn, Rp), and constraints based on nitrogen substrate concentrations
(Nn, Dn), soil moisture (Nw, Dw) and temperature (Nr, Dr):
N,0 = PyRyNyNy Ny + PyRpDyDy, Dy

In the original framework, rate potentials and N>O proportions are determined empirically
through laboratory assays (Hénault et al., 2005), whereas we needed to treat these terms as parameters to
be calibrated. As we had no means of calculating potential rates and N,O ratios separately, we calculated
their product (PNR, PDR), which we interpreted as the maximum rate of N2O production via nitrification

and denitrification respectively. Our prior distribution for PDR was based on the maximum value of PpRp
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reported in Hénault et al (2005). Their largest value was 5,640 g N ha* day, which we rounded to 10,000
g N ha™ day™ to increase the likelihood that our prior distribution contained any plausible true PDR value
(Table 5.3). We used a similarly conservative estimate that PNR would not exceed 10% of PDR,
following Matthieu et al. (2006).

We calculated the nitrogen constraint identically to NOE, as a Michaelis-Menten relationship
between nitrogen concentration and a half-saturation constant (NKu, DK, units and priors for all fitted
parameters given in Table 5.3):

v —_ INH] __ [vos]
N NKy + [NH}] “N 7 DKy +[NO5 ]
In the NOE model, Nris calculated as a simple Qo relationship, while D+ is calculated as two
separate Q1o relationships, with a strong response below ~10 °C and a weaker response above that. Due to

our inability to handle discontinuous functions (see below), and the relatively small effect this had on

relationships (Lehuger et al., 2009), we used the same general function for both Nt and D+:

(T —20)1logNQq, (T —20)logDQq
Ny = exp ,Dr = exp ]

10 10

We made the most drastic modifications to the soil moisture constraints. In NOE, the constraint
for denitrification is a power relationship with a cutoff at 40-80% WFPS below which denitrification is
held to be nonexistant. Once again, we needed to avoid discontinuity, and given the significant
contribution of denitrification to N.O production at low WPFS (Bateman and Baggs, 2005), we modeled
this relationship more conservatively as an exponential function with a parameter governing the
curvature:

Dy, = exp[(WFPS — 1)DW,]

The constraint for nitrification required even greater alteration. NOE models this through three terms:
upper and lower WFPS bounds, outside of which nitrification does not occur, and an optimal WFPS, with
linear slopes connecting the three points. We approximated this using the probability density function of

the beta distribution, rescaled to give a maximum value of 1:
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oy (WEPSYWA~2(1 — WEPS)WWo~t (NWA + NWj — 2)
W= B(NW,, NWj) NW, — 1

We constructed this model using the Stan language and framework as implemented in the 'rstan’
R package (Carpenter and et al., n.d.; Hoffman and Gelman, n.d.; Stan Development Team, 2015). Stan
differs from other Bayesian modeling software (e.g. BUGS, JAGS) in its use of a No-U-Turn Sampler
(NUTS) implementation of Hamiltonian Monte Carlo (Hoffman and Gelman, n.d.). This has the benefit of
dramatically reducing the number of iterations needed to appropriately sample the posterior distribution,
but also requires continuous functions for its gradient calculations, leading to our need to diverge from the
NOE model formulation. To increase our precision, we calculated logarithms for the constraints, summed
them, then exponentiated to model the contributions of nitrification and denitrification. Errors were
modeled as independent and identically-distributed draws from a normal distribution with a single, site-
level variance term. In contrast to most analyses in this project, N-O fluxes were not transformed prior to
analysis, as NOE purports to estimate actual flux values.

Individual observations with negative N2O fluxes (NOE does not accommodate N,O
consumption) or missing environmental data were removed. Only plots with >5 valid observations were
included in the analysis, with the total number of observations and plot-years given in Table 5.1. A ceiling
of 1.0 was set for WPFS values, while floors had been previously set for soil nitrogen concentrations
(Chapter 4). Each site was modeled separately. PDR and PNR were calculated at the plot level, while all
other parameters were calculated at the site level. Model sampling consisted of 4 separate chains, each
with 2000 iterations, of which 500 were discarded as warm ups, for a total of 6000 observations.
5.2.2.4 Elastic net modeling
Our elastic net modeling approach used the ‘glmnet' package (v2.0-5, Friedman et al., 2010), largely
replicating our approach from Chapter 2. Because of the larger size of this dataset (Table 5.1), leave-one-
out cross-validation was intractable. Instead, we used 14-fold cross-validation, removing 2 samples per
fold at KBS and 4 to 5 samples per fold at ARL. For each model we conducted 20 independent cross-

validations and used the mean ‘lambda.1se’ value as the regularization parameter. Permutation
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maintained intact cropping system and year structures. Thus, the marginal effect of the model relative to
permuted data reflected explanation of plot-level variability. Potential terms for the model included
individual cropping systems, distinguishing between fertilized and unfertilized versions of the same
system, individual years (only relevant at ARL, Table 5.1), and a term for the estimated copy number of
individual clusters of orthologous groups (COGs, Galperin et al., 2015; Tatusov et al., 2003). Interactions
among these terms were not included. We computed models for the full range of alpha values, including
both the ridge regression (alpha 0.0) and lasso (alpha 1.0) extremes (Zou and Hastie, 2005).

5.3 Results and Discussion

5.3.1 Dataset description

Our dataset contained 10,679 measurements of soil N.O fluxes recorded over 6 years (Table 5.1). The
basic sampling unit was a plot measured over the course of a single year (plot-year), with 759 plot-years
represented in our dataset. The N>O emissions model recalibration dataset (Section 3.4) comprised 38%
of our total observations, with 319 plot-years each having 6 to 19 measurements (median 13.5). Our
dataset for elastic net modeling (Section 3.6) was further constrained by availability of microbial data,
limiting us to 132 plot-years. We compared distributions of N,O fluxes and environmental parameters
between observations with full environmental and microbial data to those with missing data (Fig. 5.1).
Both sets effectively overlapped for ARL, while at KBS the more constrained dataset had slightly lower
WEFPS and slightly higher temperature and NH,* concentrations. We only collected microbial data from
KBS in 2012, a year with an abnormally warm spring and severe drought (Oates et al., 2016; Sanford et
al., 2016). This likely directly caused higher temperature and lower WFPS, while the reduced
precipitation and soil moisture may have inhibited NH4* movement, leading to higher concentrations.
Nonetheless, as these deviations were relatively minor, it appears the data we used for model recalibration
and elastic net modeling were likely representative of the full dataset.

5.3.2 Aggregate annual emissions reflect cropping system effects despite high plot-level variability

We linearly interpolated N.O fluxes to aggregate them into plot level annual emissions. Emissions

differed substantially among cropping systems, sites, and fertilizer managements (Fig. 5.2). Emissions
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distributions from ARL exceeded those from KBS for all systems except the fertilized native grass and
nonfertilized restored prairie which were similar at both sites. The continuous corn (G01) and the corn
phase of the rotational system (G03) produced unusually high N.O emissions at both sites in 2010, while
emissions from fertilized switchgrass (Panicum virgatum L.) at ARL were lower in 2009 than in
subsequent years (Fig. 5.3). Thus, our report of emissions trends based on data from 2009-11
overestimated N,O emissions from annual systems and underestimated emissions from switchgrass at
ARL (Oates et al., 2016), which in the longer-term dataset did not differ from annual systems. The
switchgrass system at ARL experiences higher rates of nitrogen loss, notably fertilizer-induced N.O
emissions, relative to the native grass mix and restored prairie (Duran et al., 2016). As a monoculture, the
switchgrass system likely has a narrower time window for peak nitrogen uptake than more diverse
systems (Oelmann et al., 2007; Palmborg et al., 2005); it may thus be more difficult to match nitrogen
applications to the timing and amount of plant demand.

The peculiar behavior of the poplar (Populus nigra x P. maximowiczii) system merits
explanation. At both sites, this system was fertilized once, in 2010 (Table 5.2), likely resulting in the
progressive decline in NoO emissions observed at KBS. The uptick in 2014 coincides with plant
coppicing, which likely resulted in release of plant carbon and nitrogen and a temporary decrease in plant
uptake. The persistently high N2O emissions at ARL likely reflect the effects of a Marssonina spp. leaf
fungus that infected the plants in 2010. This dramatically reduced accumulation of plant biomass in
subsequent years (Sanford et al., 2016), and likely curtailed nitrogen uptake.

Though significant, cropping system effects were small relative to interannual, and occasionally
intraannual, variability (Fig. 5.3). The within-system variability we observed underscored the extent to
which N2O production capabilities might differ, even among the plots of a cropping system.

5.3.3 Plot level annual peak flux events were not restricted by environmental conditions or fertilizer
timing
We expected the variability in aggregate emissions should reflect similar patterns in environmental

drivers of N»O production. We expected this would be particularly evident during extremely high
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magnitude flux events (Molodovskaya et al., 2012; Németh et al., 2014). Precipitation events occurring
shortly after fertilization seemed likely to generate the highest fluxes recorded during a year (Laville et
al., 2011), with accompanying high levels of soil nitrogen, moisture, and temperature, as per our findings
in Chapter 4. When we looked at the dates on which these peak flux events occurred, however, we found
they were frequently dispersed throughout the year (Fig. 5.4). In some cases, e.g. KBS in 2013 and 2014,
many peak flux events followed fertilization events, but much more frequently we encountered large
numbers of events prior to fertilization or several months afterward. The strongest example of event-
driven synchronization of flux peaks occurred in 2012, where a late July precipitation, the first major one
of the growing season, resulted in the highest fluxes observed from nearly all systems, including those
receiving no fertilization. Increases in N>O production are common when rewetting follows a drought
(Guo et al., 2014), but the severity of this drought speaks to the magnitude of event required for this
degree of synchronization.

While peak flux timings were only weakly determined by major field events, we reasoned that
peak fluxes might still require near-ideal environmental conditions. To that end, we contrasted
distributions of environmental parameters observed during peak flux events to those observed at all other
times (Fig. 5.5). Non-peak fluxes from some years were higher than peak fluxes from others; thus while
N-O fluxes were generally higher during peak flux events, there was still overlap between the
distributions. Overlap was much higher for other environmental variables. At ARL, WFPS during peak
flux events tended toward the upper end of the distribution, but this was not the case at KBS. For some
systems, the distribution of soil nitrogen concentrations was shifted higher during peak flux events
relative to other times of year, while for others like the fertilized switchgrass at ARL the two distributions
were indistinguishable. It may be that while individual terms were not that different from the norm, on
peak flux days all parameters were near the upper end of their distribution, raising the upper limit for N.O
production (Chapter 4). Conditions leading up to a flux event may also matter. For instance, rewetting

events after a drought, like those observed in 2012, affect microbial activity in ways that differ
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qualitatively from moisture-activity relationships under a more consistent moisture regime (Lawrence et
al., 2009; Li et al., 2010). Such interactions might not

5.3.4 Predicting potential nitrification-/denitrification-derived N,O production through model
recalibration

We attempted to recreate the NOE model Bayesian recalibration described by Lehuger et al. (2009), with
the modifications described in Section 2.2.3. We estimated the potential for N.O production from
nitrification (PNR) and denitrification (PDR) at the plot-year level, while calibrating other parameters at
the site level (Table 5.3). We successfully generated informative posterior distributions for all site-level
parameters (Fig. 5.6). However, many parameters pushed up against the edge of their prior ranges, e.g.
DKwm and DW, at ARL) indicating their true value was likely outside of the pre-defined range and
indicating that our prior assumptions about their possible values was incorrect. This interpretation is
reinforced by inspection of the results reported by Lehuger et al. (2009), who report multiple instances of
parameters whose posterior distribution abutted the limits of their priors. Moreover, a large number of
their parameters yielded uninformative posterior distributions, similar to what we observed for NQuo at
ARL and DKw at KBS. This suggests the model we used may not be well specified for reflecting the
dynamics in our dataset.

The model-derived estimates of environmental constraints over N,O production suggested
extremely dissimilar responses to environmental conditions between our study sites. The model indicated
that nitrification was the dominant process at KBS (Fig. 5.6, right panels). The moisture constraint over
denitrification, Dw, was miniscule over the range of WFPS values observed at KBS, while N, the
constraint over nitrification, exhibited considerable variation over that range. The miniscule NKy estimate
indicates nitrification at KBS was limited by soil moisture and temperature, but not NH4* concentrations.
The apparent irrelevance of NH4* may agree with our findings in Chapter 4, where the effect of NH,*
concentrations on upper bonds of N2O production could not be separated from their correlation to NOs.
These results also likely overstate the extent to which low soil moisture inhibited denitrification at KBS,

as research suggests soil matric potential may be more important to determining N-O production
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(Castellano et al., 2010). At ARL, similar soil moisture relationships were modeled for nitrification and
denitrification. This runs counter to the general understanding of the two processes, which holds that
nitrification occurs best near field capacity (Bateman and Baggs, 2005). The model further posited
extremely high saturation constants for both NH4* and NOgs, suggesting that even at the high levels we
observed both nitrification and denitrification were significantly substrate-limited.

The relationships described by this model should likely be treated with considerable skepticism,
particularly in light of the limited extent to which the model captured N»O flux variability within
individual plots (Fig. 5.7). Plot-level root mean squared error (RMSE) appeared to reflect the magnitude
of fluxes observed, rather than how well the model reflected their dynamic variability. The recalibrated
models in Lehuger et al. (2009) showed similar issues, consistently underestimating large flux events. The
NOE model is designed to reflect long-term emissions dynamics rather than individual fluxes (Hénault et
al., 2005), likely explaining many of these shortcomings and leaving the smallest ray of hope that it may
serve to estimate meaningful inherent capacities.

Alas, estimation of PNR and PDR was no more successful than any other aspect of the process
(Fig. 5.8). For the majority of plots, posterior estimates of PDR and PNR were completely uninformative.
Results were particularly stark for denitrification at KBS, likely because the miniscule Dy values rendered
PDR values irrelevant to the final flux estimate. Nonfertilized systems at ARL also gave largely
uninformative posteriors, possibly reflecting the limited range of fluxes and soil nitrogen conditions we
observed for them (Fig. 4.1). We did observe considerable variation in PDR for fertilized systems at ARL,
notably annual systems, switchgrass, and miscanthus (Miscanthus x giganteus), as well as in PNR for
many systems at KBS. Curiously, there was no systematic variation among systems; instead, plots within
some systems captured the entire range of the parameters. In aggregate, it seems likely that the PDR
parameter at ARL and the PNR parameter at KBS provided a mechanism for accommodating plot-years
with exceptionally large fluxes while largely ignoring systems whose fluxes hovered at more normal

levels. It is difficult at this point to interpret the NOE model recalibration approach we attempted here as
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anything other than a failure. However, we included PNR and PDR in the subsequent analysis, if only in
the spirit of scientific inquiry.

5.3.5 Aggregate N,O emissions strongly correlated to peak fluxes but not to PDR or PNR

The existence of an inherent, plot-level capacity for N2O production formed a central tenet of the analyses
undertaken in this chapter. The metrics we explored in the previous three sections were all attempts to
estimate this capacity. We would thus expect them to correlate to the extent that they reflect similar
aspects of their systems. We observed correlation between aggregate annual emissions and peak fluxes,
neither of which correlated significantly to PDR or PNR (Fig. 5.9, PDR and PNR correlations to peak
fluxes not shown). Prior studies have noted that short-duration, high-intensity flux events contribute
significantly to aggregate emissions and to their variability (Molodovskaya et al., 2012; Németh et al.,
2014). Despite this, we were unprepared for the strength and generality of this relationship. The influence
of peak flux events varies greatly among plots and treatments in our dataset; even the tiny subset from
Fig. 5.7 reflects the variety of forms annual flux profiles can take. In our previous analysis of these
systems, we found the relative magnitude and importance of peak fluxes varied among cropping systems,
with more prominent and influential peaks in fertilized, annual systems than polycultural and unfertilized
ones (Oates et al., 2016). This could have resulted in a relationship driven primarily by differences among
cropping systems, rather than the within-system relationship we observed (Fig. 5.9). It is worth reflecting
on the many assumptions folded into aggregate emissions estimates (Section 2.2.1) as well as the myriad
factors influencing the flux we observe during a peak, including short and long term environmental
contexts and even a degree of stochasticity in the actual date of sampling. That we see a relationship that
is consistent through differences in management, site conditions, and annual weather patterns suggests
both of these metrics may reflect some more fundamental cropping system property.

5.3.6 Elastic net modeling relates functional gene profiles to variability in aggregate N,O emissions
Having generated four estimators of inherent plot-level N.O production capacity, we used elastic net
modeling to evaluate whether they mapped onto aspects of soil microbial functional gene profiles. Given

the consistent qualitative differences we observed between ARL and KBS, we analyzed the sites



154

separately. The set of potential predictors for these models included terms for cropping systems, years,
and estimated copy numbers of clusters of orthologous groups (COGs, details in Section 2.2.4). At both
sites, we were most successful in modeling aggregate emissions, where they could explain over 75% of
the variability in aggregate emissions (Fig. 5.10). Despite the strong correlation between aggregate
emissions and peak fluxes (Fig. 5.9), the latter were not as easily modeled with this approach. At ARL,
PDR was actually better-modeled than peak fluxes, although PNR at ARL and both metrics at KBS
produced effectively null models.

In elastic net modeling, the alpha parameter determines the tradeoff between ridge (alpha=0) and
lasso (alpha=1) penalization terms. The distinction can be generalized as a tradeoff between retention of
all terms with heavy shrinkage of their coefficients in ridge regression and the retention of a limited
number of terms with lower shrinkage in lasso (Friedman et al., 2010; Zou and Hastie, 2005). The effect
of alpha differed by site and response variable. Aggregate emissions at ARL and peak fluxes at KBS were
largely insensitive to alpha values (Fig. 5.10). In contrast, aggregate emissions modeling at KBS
improved with alpha, while dropping alpha from 0 to 0.2 substantially decreased peak flux model quality
at KBS. For alpha > 0.5, the number of terms remained relatively constant for most models. These
responses contrast with the results we obtained from the ARL corn system in Chapter 2, where we found
that increasing alpha above 0.5 substantially decreased both model performance and the number of
parameters retained. The differences with Chapter 2 and between sites in this analysis may reflect the
relative number of observations for each analysis, where a larger dataset may reduce sensitivity to the
particulars of the modeling process.

We used permutation tests to evaluate model performance and guard against overfitting. Of
particular concern was the risk of the microbial data simply replicating system-level differences (Fig. 5.2,
Fig. 5.5), via cropping system differences in functional gene profiles (Chapter 3). We included terms for
cropping systems and years to provide a mechanism for expressing that variability, but also restricted
sample permutations to occur within cropping system and year. Thus, cropping system means for the

response variables were identical for our real data and all permutations; the only differences occurred
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within cropping systems. Thus, the differences between our actual model results and results from
permuted data reflect the extent to which plot-level variability in functional gene profiles reflected plot-
level variability in estimators of N,O production capacity. By this metric, functional gene data
substantially improved modeling of plot-level variability in aggregate emissions for high values of alpha
at KBS and for all values of alpha at ARL (Fig. 5.10). In contrast, the models built to predict peak fluxes
from both sites and PDR at ARL performed comparably to results obtained without a plot-level linkage
between microbial community data and response variables. From this, we conclude that functional gene
data only contributed to modeling plot-level variability of aggregate emissions.

Models of aggregate emissions at ARL and KBS retained few non-microbial terms. At ARL, the
exceptions included specific terms for nonfertilized prairie and fertilized corn, whose emissions were
systematically lower and higher than those from continuous corn, respectively. At KBS, the only cropping
system term retained was poplar, with lower emissions than the continuous corn baseline. All three terms
were retained at all alpha values. As in Chapter 2, all year terms were dropped. The terms retained reflect
unusual behaviors noted in Section 3.2: at ARL, N>O emissions were higher in switchgrass than in other
fertilized perennial crops while emissions from KBS poplar and ARL nonfertilized prairie were among
the lowest from any system in (Fig. 5.3). It should be noted that multiple COG terms were retained
alongside the cropping system terms, indicating emissions from these systems differed from what their
microbial communities would predict. Switchgrass appears to possess unusual and undesirable nitrogen
cycling properties relative to other perennial systems grown at ARL.: it emits more N,O than other
systems (Section 3.2), emits a higher proportion of fertilizer nitrogen as N,O than the restored prairie or
native grass mix (Duran et al., 2016) its N,O fluxes respond differently to environmental drivers than
those from virtually every other system (Oates et al., 2016), and it displayed slower nitrogen resorption
and reduced resorption proficiency relative to prairie (Jach-Smith and Jackson, 2015). Switchgrass
performs like a typical perennial system at KBS, indicating this is not a species-level issue; it is unclear
whether the undesirable performance of switchgrass at ARL stems from a mismatch to soil or other

growing conditions at the site, or reflects issues with its establishment.
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In addition to the cropping system terms, aggregate annual emissions models retained 46 to 38
COGs as terms at ARL and 19-15 at KBS (at alpha from 0.5 to 1). At alpha=1, all COGs retained at KBS
belonged to one of six function categories at KBS and only four categories at ARL (Fig. 5.11). Two
denitrification-associated COGs were retained in the KBS model: COG5013, the nitrate reductase o
subunit, retained at alpha<0.2, and COG1140, the nitrate reductase  subunit, retained at all alpha levels.
By contrast, ARL models at alpha>0.2 lacked any COGs from function category P, which contains genes
involved in inorganic ion transport and metabolism, including all genes directly involved in nitrification
and denitrification.

It is important not to over-interpret this observation. At higher alpha levels, individual terms are
retained from groups of correlated parameters, with limited discrimination of which term is retained
(Helbling et al., 2015). As noted in Chapter 2, terms with limited relevance in an elastic net model may
correlate directly to the response variable. This lack of clarity in the importance of whether individual
parameters are dropped or retained may reduce the utility of elastic net modeling to identify mechanisms
by which the relationships it identifies operate. Moreover, we characterized microbial functional
capabilities simply based on gene abundance, whereas other studies suggest variation in N-O production
may be due to physiological differences among microorganisms (Cavigelli and Robertson, 2001; Yoon et
al., 2016) or to differences in gene ratios (Palmer et al., 2012; Philippot et al., 2011). Gene expression
might provide a better link to microbial activity than gene abundance, but this expression would have to
be recorded during conditions that approximated inherent production capabilities (e.g. Uchida et al.,
2014). Our study does not serve to establish a causal link between microbial community properties and
N.O production, but we demonstrate that the substantial plot-level variability is, in some way, related.
5.4 Conclusions
We explored four plot-level estimators of inherent N>O production capacity which we attempted to relate
to microbial functional gene abundance profiles. Bayesian recalibration of the NOE N-O production
model failed to generate informative or credible estimates of potential N.O production by nitrification and

denitrification. Aggregate annual emissions and peak annual fluxes, two estimators based on empirical
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measurements, correlated strongly to each other despite many potential sources of divergence, and as such

may reflect underlying plot-level properties. Despite this correlation, aggregate emissions proved easier to

model from functional gene abundance data using elastic net modeling, suggesting the two estimators
differ slightly in the system properties they reflect. Models were quite good at capturing variability of
plots within cropping system, and did so using genes from relatively few different function categories.

Genes involved in denitrification were included in the models for KBS, but no nitrogen cycle genes were

included in models for ARL. Overall, our findings strongly suggest a relationship between plot-level

variabilities in aggregate N.O emissions and microbial functional gene abundance profiles, although this
relationship may not rest on differences in the microbial community’s genetic capacity for N>O
production and consumption.
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Table 5.1 Number of environmental data observations and samples for different levels of data

completeness

ARL KBS
Obs. Samples  Years Obs. Samples  Years
Full dataset 6689 416 2009-14 3990 343  2009-14
All field data 2685 207 2010-13 1017 112 2010-12
Field + microbial data 1534 105 2010-12 276 27 2012

A sample is defined as a plot measured over a year. Measurements with full field data
have N,O flux, ammonium/nitrate concentration, water-filled pore space, and soil
temperature data and came from a sample with a minimum of five measurements.
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Table 5.2 Nitrogen fertilizer application dates

Year
Site Code System 2009 2010 2011 2012 2013 2014
ARL G01 C.Corn 11-Jun 7-Jun  28-Jun 7-Jun  28-Jun  16-Jun
G02 Rotation 27-May  28-Jun 7-Jun  28-Jun  16-Jun
G03  Rotation 18-May 7-Jun 7-Jun 16-Jun
G04  Rotation 11-Jun 27-May 28-Jun
GO05  Switchgrass 27-May 27-May 11-May 30-May 5-Jun
G06  Miscanthus Replanted 27-May 11-May 30-May 5-Jun
GO07  Grass mix 27-May 27-May 11-May 30-May 5-Jun
G08  Poplar 21-Apr
G09  Old field 18-May  27-May 27-May 11-May 30-May 5-Jun
G10  Prairie 27-May 27-May 11-May 30-May 5-Jun
KBS G01 C.Corn 22-Jun 15-Jun  13-Jun  11-Jun  12-Jun  18-Jun
G02 Rotation 10-May 13-Jun  11-Jun  28-Jun  27-Jun
G03  Rotation 15-Jun 15-Jun 11-Jun 27-Jun
G04  Rotation 22-Jun 20-May 28-Jun
GO05  Switchgrass Replanted 10-May 18-May 4-May 16-May 23-May
G06  Miscanthus 22-Jun 10-May 18-May 4-May 16-May 23-May
GO07 Grassmix  Replanted 10-May 18-May 4-May 16-May 23-May
G08  Poplar 1-Jun
G09  Old field 15-Jun 10-May 18-May 4-May 16-May 23-May
G10  Prairie Replanted 10-May 18-May 4-May 16-May 23-May

Bolded values indicate corn phases From2009-2011, G02-G04 were in a corn-canola-soybean
rotation. From 2012-2014, G02 was continuous corn with a cover crop, while G03-G04 were a
corn-soybean rotation with a cover crop. Soybean phases received no nitrogen fertilizer.
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Table 5.3 Description and prior distributions for parameters used inN,O emissions model recalibration

Prior distribution

Process Parameter Description Min Max

Denitrification DKy Half saturation constant (nitrate) 5 120
DQ1o Q1o factor 1.0 2.5
DWa Exponential coefficient for WFPS relationship 0.1 10.0
PDR Potential denitrification-driven N2O flux 1 10000

Nitrification ~NKM Half saturation constant (ammonium) 1 50
NQ1o Q1o factor 1.9 13
NWa Beta distribution parameters for WFPS 5 15
NWsg relationship 1 12
PNR Potential nitrification-driven N,O flux 1 1000

Half saturation constants are in units of ug g soil, potential fluxes are in g ha* day?, all other
terms are unitless. PDR and PNR are not denitrification potential rates, as they reflect N.O
production ratios for these processes, upper values are based on Hénault et al. (2005). Half
saturation constants and NQ1o ranges are based on values from Lehuger et al. (2009), other
values were given minimally informative priors.
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Table 5.4 Clusters of orthologous groups (COG) function categories.

Category Function

Translation, ribosomal structure and biogenesis

RNA processing and modification

Transcription

Replication, recombination and repair

Chromatin structure and dynamics

Cell cycle control, cell division, chromosome partitioning
Nuclear structure

Defense mechanisms

Signal transduction mechanisms

Cell wall/membrane/envelope biogenesis

Cell motility

Cytoskeleton

Extracellular structures

Intracellular trafficking, secretion, and vesicular transport
Posttranslational modification, protein turnover, chaperones
Mobilome: prophages, transposons

Energy production and conversion

Carbohydrate transport and metabolism

Amino acid transport and metabolism

Nucleotide transport and metabolism

Coenzyme transport and metabolism

Lipid transport and metabolism

Inorganic ion transport and metabolism

Secondary metabolites biosynthesis, transport and catabolism
General function prediction only

Function unknown

Information copied from
ftp://ftp.ncbi.nih.gov/pub/COG/C0OG2014/data/fun2003-2014.tab
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Figure 5.2 Distribution of aggregate annual N2O emissions among sites and fertilization. Values are plotted on a logarithmic scale. Boxes indicate
25M 50, and 75" percentiles. Note that the number of observations and the range of years represented varied by cropping system and site (see
Fig. 5.3).
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Figure 5.3 Aggregate annual N>O emissions by year and treatment. Lines indicate median values, n=5 at ARL, n=4 at KBS. G02-G04 are annual
crop rotations: corn-soybean-canola from 2009-11, after which G02 was cover-cropped continuous corn and G03-G04 were a corn-soybean

rotation grown with cover crops (rotation schedule is given in Table S4.1).
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Figure 5.5 Comparison of N»O fluxes and environmental parameters measured on dates with and without
peak flux events. Within a system, all dates on which at least one sample recorded a peak flux were
considered peak flux dates. Top three panels are IHS transformed. Boxes indicate 25", 50, and 75"
percentiles.
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Figure 5.6 Posterior distributions of N-O emissions model parameters (left), and of mean values for the
resulting multiplicative constraints (right). Units and interpretations of parameters are given in Table 5.3.
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Figure 5.7 Individual plot-year examples of the accuracy of N,O flux predictions obtained through model
recalibration (black points) relative to observed values (red points and lines). Samples selected to
represent the 10", 50, and 90™" percentile of sample-level root mean squared error for all plot-years from

a site.
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Figure 5.8 Posterior estimates of potential production of N2O via denitrification and nitrification, based on N,O emissions model recalibration.
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Figure 5.9 Correlation of aggregate annual N2O emissions to peak fluxes and model-derived potential
N>O production from denitrification (PDR) and nitrification (PNR). Black lines indicate linear fits. All

axes are plotted on a logarithmic scale.
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Figure 5.10 Deviance in estimators of N>O production capacity explained by microbial functional gene
profiles by elastic net modeling, as a function of the alpha regularization parameter. Point size was capped
at 131 terms for display. Successively lighter shades indicate 80™, 85, 90", and 95" percentiles for
deviance ratios for 200 permutations of response variables within cropping system and year. Sites were
analyzed independently.
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EPILOGUE
Next steps and publication plans
The preceding chapters were organized to try to present an overarching narrative about the effects of
cropping systems on soil microbial communities and nitrous oxide (N2O) production. Some
reorganization of these analyses will be necessary to produce standalone narratives for publication.

The analysis of cropping system and environmental effects on N-O production could combine the
environmental constraints analyzed in Chapter 4 with the aggregate emission and peak flux analyses from
Chapter 5. This dataset lends itself to two analyses. First, it allows comparison of N,O emissions from a
diverse array of potential biomass feedstock cropping systems. While similar data have been generated
before (Roth et al., 2014; Toma et al., 2011), such studies include far fewer systems, frequently with a
single example of attributes such as perenniality and polyculture. The greater breadth of systems in this
dataset, with multiple instances of key attributes, illustrates the limited consistency of these effects across
different cropping systems. Second, this allows for a more robust description of how environmental
factors influence effects attributed to cropping systems. These combined analyses would provide data
from a variety of systems, which would be useful for subsequent meta-analyses and modeling efforts, as
well as concrete exploration of the interactions between cropping systems and their environmental
conditions.

The microbial community data, by contrast, will benefit from further analysis prior to publication.
As discussed in Chapter 3, batch effects influenced functional gene profiles, quite likely due to
differences in annotation pipelines. Reanalyzing the data within a single pipeline is unlikely to drastically
alter our findings; in an exercise not presented in this dissertation, we conducted a combined assembly
with many of our samples, which produced results that did not differ qualitatively from those reported
here. Nonetheless, a uniform annotation process is tractable and could clarify the influence of treatment
factors on functional gene profiles by reducing any methodological noise we were unable to correct.
Another benefit of this reanalysis is that it would enable us to employ KEGG orthology (KO) functional

gene annotations, which is currently impossible for many of our samples. KO annotations are more
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extensively curated and updated than the COG annotations we employed, and are contextualized within
biochemical reactions (Kanehisa et al., 2016). Moreover, KEGG annotations support a more robust
system for copy-number estimation (Manor and Borenstein, 2015), which could further improve the
accuracy of our abundance profiling. All of this would allow us to place greater emphasis on individual
annotations, leading to a more reliable interpretation of the functions retained through elastic net
modeling, as in Chapter 5. Combining the description of cropping system effects on soil microbial
communities with their connection to variability in N2O emissions would produce an exciting story.

The N20 production model recalibration does not appear worth pursuing further. There are
sufficient deficiencies in the underlying model and in our ability to implement it with our extant dataset to
make this analysis worth reporting. More generally, the approach we attempted here is of limited utility.
N.O production potential can be measured directly using denitrifying enzyme activity assays (Smith and
Tiedje, 1979) or other methods, without the need for numerous field observations or the risk of failing to
sample a sufficiently broad range of environmental conditions to accurately model the system. We are
presently conducting such an analysis in a separate project, which looks at the effects of fertilization rates
on nitrogen cycling in switchgrass.

Broader findings

Cropping system differences are less extreme and less consistent than expected

The underlying premise of the bioenergy cropping systems experiment was that meaningful,
management-relevant differences existed among agroecosystems. Properties like perenniality, plant
species diversity, or "natural™ status have been hypothesized or demonstrated to influence productivity,
nutrient cycling, suitability as habitat, and provision other ecosystem services (Daily et al., 1997; Meehan
etal., 2011; Tilman et al., 1997; Werling et al., 2014). This reasoning led to an emphasis on perennial,
preferably polycultural, systems as the ideal means of providing bioenergy feedstocks (Griffith et al.,
2011; Robertson et al., 2008; Tilman et al., 2006). These properties influenced nitrogen cycling, including

N>O emissions, potentially even changing their response to environmental conditions
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(Dechow and Freibauer, 2011; Niklaus et al., 2006; Oelmann et al., 2007; Palmborg et al., 2005).
Microbial communities similarly responded to agroecosystem differences (Allison et al., 2005; He et al.,
2008; Liang et al., 2012). Our initial studies of this system also indicated major cropping system
differences in soil microbial community composition (Herzberger et al., 2014) and N,O dynamics (Oates
et al., 2016). In the analyses presented here, however, we consistently encountered weaker and less
consistent cropping system effects than we anticipated.

Cropping systems lie at the heart of all five chapters in this dissertation, and in all cases they
exerted significant effects on the property we studied, although frequently to a smaller extent than we
expected. We anticipated that many cropping system effects would reflect ecological distinctions like
perenniality and plant diversity, but this was rarely the case. In Chapter 1, we observed massive
differences between the membrane lipid profiles of corn and prairie systems, but much smaller
differences in their 16S rRNA and functional gene abundance profiles. In Chapter 3, functional gene
abundances often varied as much within a cropping system as they did between different systems and
relative differences among systems changed from year to year. In Chapter 4, we saw considerable overlap
in the N2O flux distributions of switchgrass and annual systems, as well as minimal system-level
differences in N2O flux responses to environmental constraints, despite differences in emissions factors
among some of these systems (Duran et al., 2016). In Chapter 5, we saw considerable overlap in
distributions of aggregate emissions for many systems, and similar overlap in the values of peak N2O
fluxes from those systems.

These findings, though unexpected, are plausible. Many of our expectations for the relative
behavior of these cropping systems stems from pre-existing, established examples. In many cases, the
decision to establish a particular system reflected soil and other ecosystem properties, which may have
driven much of the variability we observed (Liang et al., 2013, 2012). The systems in this study were all
grown in an agronomic trial framework that sought to minimize the influence of system-independent
conditions (Sanford et al., 2016). Moreover, systems were managed following university extension

recommendations, which among other things seeks to minimize undue environmental impacts. If
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management had included mechanical disruption via tillage, manure application, or excessive fertilization
we might have observed more extreme and consistent differences in N2O emissions and microbial
community composition. It is critical to note that limited cropping system effects did not result in limited
variability in our responses. N-O production and soil nitrogen concentrations varied over orders of
magnitude within a system (Chapter 4, Chapter 5). While microbial community variability was less
dramatic (Chapter 1, Chapter 3), there were nonetheless substantial differences in the abundances of
specific genes and in the overall abundance profile.

The limited and inconsistent cropping system effects are frustrating from a management and
policy perspective, as they indicate it will be difficult to predict outcomes and design straightforward
policies based primarily on cropping system identity. From a research perspective, particularly an
ecological one, this is tremendously exciting, as it implies uncharacterized sources of variation that may
ultimately result in a greater dynamic range over which agroecosystem functioning can be influenced.
Cropping system effects manifest rapidly but remain small relative to interannual variability
We anticipated to observe a gradual, progressive emergence of differences among cropping systems. For
perennial systems in particular, the conceptual model was of an initial establishment phase followed by a
more stable phase, with nutrient cycling, productivity, and other system functions differing between the
two (Oates et al., 2016). Soil carbon, changing over decades to centuries, provided a perfect example of
the long-term dynamics we expected to observe (Sanford et al., 2012). From a microbial perspective, this
expectation was supported by literature reports of long-term land use legacies outweighing current plant
species compositions (Jangid et al., 2011) and ongoing directional microbial community shift for years
following land use conversion (Allison et al., 2005; Jangid et al., 2010).

Yield data from BCSE cropping systems largely followed the expected patterns. Yields from
most perennial systems increased over multiple years before stabilizing (Sanford et al., 2016). In contrast,
cropping system differences were immediately visible in both the microbial and N>O production data we
analyzed, but any subsequent increase in that difference was lost amidst interannual variability. Microbial

community metrics diverged significantly among systems two years after BCSE establishment, but the
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magnitude of that divergence did not in subsequent years (Chapter 1, Chapter 3). Similarly,
“establishment phase” N>O dynamics did not differ from those observed in more “mature” systems
(Chapter 4, Chapter 5), with the sole exception of KBS poplar, where we observed the expected
progressive decrease in NoO emissions until the system was disrupted. Cropping system effects
manifested quickly and did not increase over the study period. At the same time, we observed
considerable temporal variability. Relative differences among cropping systems were often inconsistent
across years and measurements taken from individual plots correlated weakly over time; for many
analyses, plot-years could be treated as independent entities. Overall, the systems we studied were
characterized by high variability that was only partially explained by cropping system and interannual
effects.

Microbial community properties reflect plot-level environmental variability

At the outset of this project, we expected our story would reflect gradually increasing cropping system
influence on soil microbial communities and N2O production dynamics. While we did observe cropping
system influence, most of the variance we observed resided among plots with ostensibly similar
environmental conditions and selective pressures.

This might plausibly have rsulted

It is easy to imagine complete independence between the broad distributions of N,O emissions and the
minimally-structured ordinations of microbial community properties, each generated by their own
unmeasured stochastic processes or resulting from particular methodological issues. Instead, we found
that these seemingly disorganized functional gene profiles contained indicators that accounted for much
of the seemingly random plot-level variability in N,O emissions. In Chapter 2, our analysis was clouded
by the risk of spurious correlation driven by small sample sizes. In Chapter 5, we found a similar strength
of relationships with a much larger, more heterogeneous dataset. These models were not built purely from
microbial indicators, as many retained year- or system-specific terms, but microbial data were central to
their capacity to explain variability within treatment groups. The functional genes identified through this

approach did not immediately suggest a mechanism by which this relationship operated, and our analyses
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could not have determined whether microbial communities drove the patterns of N.O emissions we

observed or merely served as sensitive, informative indicators of the actual drivers. However, the

relationship we observed between the highly variable, seemingly noisy patterns of N-O emission and
microbial community composition suggests a strong link, whether direct or indirect, between the two.

This link promises to be more complex and informative than we initially anticipated; it and its

implications about the shaping of microbial communities and regulation of environmental processes

would be very exciting.
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